Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T03:46:34.339Z Has data issue: false hasContentIssue false

Simulation of Self-Heating and Temperature Effect in GaN-based Metal-Semiconductor Field-Effect Transistor

Published online by Cambridge University Press:  01 February 2011

Valentin O Turin
Affiliation:
[email protected], RPI, ECSE, CII 9015, 110 8th St, Troy, NY, 12180, United States, (518)-276-3058, (518)-276-2990
Alexander Balandin
Affiliation:
[email protected], UCR, EE, United States
Get access

Abstract

Two-dimensional electro-thermal simulations of GaN-based metal-semiconductor field-effect transistor are performed in the framework of the drift-diffusion model. The dependence of the hot spot temperature in transistors with many gates on the gate-to-gate pitch is studied. The case of SiC substrate is compared to the case of sapphire substrate. The ambient temperature effect on transistor performance is simulated. The specific of a thermal breakdown in GaN-based devices is discussed. The results obtained can be useful for the optimization of the thermal design for field-effect transistors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M.A. et al. , Appl. Phys. Lett. 62, 1786 (1993); 63, 1214 (1993).CrossRefGoogle Scholar
2. Wu, Y.-F., IEEE Electron Device Lett. 25, 117 (2004).Google Scholar
3. Balandin, A.A. et al. , IEEE Electron Device Lett. 19, 475 (1998).CrossRefGoogle Scholar
4. Yoshida, S. et al. , Solid-State Electron 47, 589 (2003).Google Scholar
5. Rinaldi, N., IEEE Trans. Electron Device 49, 679 (2002).CrossRefGoogle Scholar
6. Binari, S.C. et al. , Solid-State Electron 41, 1549 (1997).CrossRefGoogle Scholar
7. Liu, W.L. et al. , MRS Internet J. Nitride Semicond. Res. 9, 7 (2004).Google Scholar
8. Mnatsakanov, T.T. et al. , Solid-State Electron. 47, 111 (2003).CrossRefGoogle Scholar
9. Turin, V.O., Solid-State Electron. 49, 1678 (2005).CrossRefGoogle Scholar
10. Farahmand, M. et al. , IEEE Trans. Electron Devices, 48, 535 (2001).CrossRefGoogle Scholar
11. Bhapkar, U.V. and Shur, M.S., J. Appl. Phys. 82, 1649 (1997).CrossRefGoogle Scholar
12. Kuball, M. et al. , phys. stat. sol. (a) 202, 824 (2005).CrossRefGoogle Scholar
13. Nuttinck, S. et al. , IEEE Trans. Microwave Theory Tech. 51, 2445 (2003).CrossRefGoogle Scholar
14. Turin, V.O. and Balandin, A.A., Electron. Lett. 40, 81 (2004).CrossRefGoogle Scholar
15. Neudeck, P.G., Okojie, R.S., and Chen, L.-Y., Proc. IEEE, 90, 1065 (2002).CrossRefGoogle Scholar