Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T04:03:12.267Z Has data issue: false hasContentIssue false

Simulation of Segregation to Interfaces in Metal-Oxides

Published online by Cambridge University Press:  15 February 2011

C. Battaile
Affiliation:
University of Michigan, Department of Materials Science, Ann Arbor, MI 48109-2136
R. Najafabadi
Affiliation:
University of Michigan, Department of Materials Science, Ann Arbor, MI 48109-2136
D.J. Srolovitz
Affiliation:
University of Michigan, Department of Materials Science, Ann Arbor, MI 48109-2136
Get access

Abstract

Segregation of isovalent cation impurities to (001) and (011) free surfaces in (Co0.3Ni0.7)O and (Fe0.12Mn0.88)O was investigated using atomistic computer simulations. Impurity concentrations were represented by a mean-field approximation, and equilibrium distributions of impurities were calculated by minimization of the free energy. Surface energy effects were found to dominate segregation behavior, even when in competition with misfit strain energy effects. These Free Energy method predictions compared well with more accurate Monte Carlo simulations, suggesting that the mean-field representation of impurity concentration is satisfactory for this application.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roshko, A. and Kingery, W.D., J. Amer. Ceram. Soc. 68, C331 (1985).Google Scholar
2. Handwerker, C.A., Morris, P.A., and Coble, R.L., J. Amer. Ceram. Soc. 72, 130 (1989).Google Scholar
3. McCune, R.C. and Ku, R.C., in Advances in Ceramics 10 (Amer. Ceram. Soc., 1984) pp. 217–37.Google Scholar
4. Tasker, P.W., Colbourn, E.A., and Mackrodt, W.C., J. Amer. Ceram. Soc. 68, 74 (1985).Google Scholar
5. Foiles, S.M., Phys. Rev. B 32, 7685 (1985).Google Scholar
6. Foiles, S.M., Phys. Rev. B 40, 11502 (1989).Google Scholar
7. LeSar, R., Najafabadi, R., and Srolovitz, D.J., Phys. Rev. Lett. 63, 624 (1989).Google Scholar
8. Sutton, A.P., Phil. Mag. A 60, 147 (1989).Google Scholar
9. Najafabadi, R., Wang, H.Y., Srolovitz, D.J., and LeSar, R., Acta metall. 39, 3071 (1991).Google Scholar
10. Wang, H.Y., Najafabadi, R., Srolovitz, D.J., and LeSar, R., Acta metall. 41, 2533 (1993).Google Scholar
11. Zhao, L., Najafabadi, R., and Srolovitz, D.J., Modelling Simul. Mater. Sci. 1, 539 (1993).Google Scholar
12. Woodcock, L.V. and Singer, K., Trans. Far. Soc. 67, 12 (1970).Google Scholar
13. Lidiard, A.B. and Norgett, M.J., in Comparative Solid State Physics (Plenum, 1972) pp. 385412.Google Scholar
14. Chen, T.S., Wette, F.W. de, and Alldredge, G.P., Phys. Rev. B 15, 1167 (1977).Google Scholar
15. Anastasiou, N. and Fincham, D., Comp. Phys. Comm. 25, 159 (1982).Google Scholar
16. Catlow, C.R.A. and Mackrodt, W.C., eds., Computer Simulation of Solids (Springer Verlag, 1982).Google Scholar
17. Jockisch, A., Schroder, U., Wette, F.W. de, and Kress, W., Surf. Sci. 297, 245 (1993).Google Scholar
18. Dick, B.G. and Overhauser, A.W., Phys. Rev. 112, 90 (1958).Google Scholar
19. Ewald, P.P., Phys. Rev. 39, 765 (1932).Google Scholar
20. Metropolis, N.A. et al. , J. Chem. Phys. 21, 1087 (1953).Google Scholar
21. Sangster, M.J.L. and Stoneham, A.M., Phil. Mag. B 43, 597 (1981).Google Scholar
22. Friedel, J., Adv. Phys. 3, 446 (1954).Google Scholar