Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:39:05.616Z Has data issue: false hasContentIssue false

Simulation of Forescattered Electron Channeling Contrast Imaging of Threading Dislocations Penetrating SiC Surfaces

Published online by Cambridge University Press:  01 February 2011

Mark E. Twigg
Affiliation:
[email protected], Naval Research Laboratory, Code 6812, 4555 Overlook Ave., SW, Washington, DC, 20375, United States, (202) 404-8543, (202) 404-7194
Yoosuf N. Picard
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Joshua D. Caldwell
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Charles R. Eddy
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Philip G. Neudeck
Affiliation:
[email protected], NASA Glenn Research Center, Cleveland, OH, 44315, United States
Andrew J. Trunek
Affiliation:
[email protected], OAI, Cleveland, OH, 44315, United States
J. Anthony Powell
Affiliation:
[email protected], Sest, Inc., Cleveland, OH, 44315, United States
Get access

Abstract

The interpretation of ECCI images in the forescattered geometry presents a more complex diffraction configuration than that encountered in the backscattered geometry. Determining the Kikuchi line that is the primary source of image intensity often requires more than simple inspection of the electron-channeling pattern. This problem can be addressed, however, by comparing recorded ECCI images of threading screw dislocations in 4H-SiC with simulated images. An ECCI image of this dislocation is found to give the orientation of the dominant Kikuchi line, greatly simplifying the determination of the diffraction simulation. In addition, computed images of threading screw dislocations in 4H-SiC were found to exhibit channeling contrast essentially identical to that obtained experimentally by ECCI and allowing determination of the dislocation Burgers vector.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crimp, M.A. Microscopy Research and Techniques 69, 374 (2006).Google Scholar
2. Trager-Cowan, C., Sweeney, F. Trimby, P. W. Day, A. P. Gholinia, A. Schmidt, N.H. Parbrook, P. J. Wilkinson, A. J. and Whatson, I. M. Phys. Rev. B 75, 085301 (2007).Google Scholar
3. Picard, Y. N. Twigg, M. E. Caldwell, J. D. Eddy, C. R. Jr., Neudeck, P. G. Trunek, A. J. and Powell, J. A. Appl. Phys. Lett. 90, 234101 (2007).Google Scholar
4. Rossouw, C. J. Miller, P. R. Josefsson, T. W. and Allen, L. J. Philos. Mag. A 70, 985 (1994).Google Scholar
5. Winkelmann, A. Trager-Cowan, C., Sweeney, F. Day, A. P. and Parbrook, P. Ultramicrosc. 107, 414 (2007).Google Scholar
6. Dudarev, S. L. Ahmed, J. Hirsh, P. B. and Wilkenson, A. J. Acta Cryst. A55, 234 (1999).Google Scholar
7. Powell, J. A. Neudeck, P. G. Trunek, A. J. Beheim, G. M. Matus, L. G. Hoffman, R. W. Jr., and Keys, L. J. Appl. Phys. Lett. 77, 1449 (2000).Google Scholar
8. Pogany, A. P. and Turner, P. S. Acta Cryst. A 24, 103 (1968).Google Scholar
9. Graef, M. De, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003).Google Scholar
10. Hirth, J. P. and Lothe, J. Dislocations in Crystals (Wiley, New York, 1982).Google Scholar
11. Yoffe, E. H. Philos. Mag. 6, 1147 (1961).Google Scholar