Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:45:24.026Z Has data issue: false hasContentIssue false

Simulation of Composite Optical Properties Close to Percolation Threshold

Published online by Cambridge University Press:  28 February 2011

F. Brouers
Affiliation:
Institut de Physique, Université de Liège, 4000, Belgium Universitè de Provence, Dèpartement de Physique des Systémes Dèsordonnès, Centre de St Jérôme - 13397 Marseille cedex 13, France
J.P. Clerc
Affiliation:
Universitè de Provence, Dèpartement de Physique des Systémes Dèsordonnès, Centre de St Jérôme - 13397 Marseille cedex 13, France
G. Giraud
Affiliation:
Universitè de Provence, Dèpartement de Physique des Systémes Dèsordonnès, Centre de St Jérôme - 13397 Marseille cedex 13, France
Get access

Abstract

We analyze the optical properties of a metal-insulator composite thin film close to the percolation transition pc. Using a mean field approximation, it is possible to predict the existence of an optical threshold at a concentration p* slightly larger than pc. At that concentration defined by the vanishing of the real part of the dielectric constant and which depends of the relaxation time and therefore of the microgeometry, the composite optical absorption is frequency independent up to the near infrared frequencies. This property has been observed in a number of granular and cermet films.

We show that this property is quite general and can be obtained by generalizing the percolation scaling laws to a mixture of resistors, inductors and capacitors. The quality factor is shown to be a relevant physical quantity.

We report and discuss the results of simulations on real analogic LCR circuits and on computer which confirm and explicit these conclusions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Koss, R.S. and Stroud, D., Phys. Rev B35, 9004 (1987)Google Scholar
2) Clerc, J.P., Giraud, G., Laugier, J.M., Luck, J.M., Physica A 157, 204 (1989)Google Scholar
3) Brouers, F., Physica A 157, 454 (1989)Google Scholar
4) Zeng, X.C., Hui, P.M., Bergman, D.J. and Stroud, D., Phys. Rev B39, 13224 (1989)Google Scholar
5)Yagil, Y. and Deutscher, G., Appl. Phys. lett, 52, 373 (1988)Google Scholar
6) Gadenne, P., Beghdadi, A. and Lafait, J., Optics Comm. 65, 17 (1988)Google Scholar
7) Brouers, F., Clerc, J.P. and Giraud, G., Phys. Rev., to appear (1990)Google Scholar
8)Clerc, J.P., Giraud, G., Laugier, J.M. and Luck, J.M., Adv. in Physics, to pe publishedGoogle Scholar
9)Landauer, R. in Electrical Transport and Optical Properties in Inhomogeneous Media (ETOPIM) AlP conference proceedings, vol. 2 (1978)Google Scholar
10)Straley, J.P., J.Phys. C 9, 783 (1976)Google Scholar
11)Efros, E.L. and Shklovskii, B.I., Phys. Status Solidi (b) 76, 475 (1976)Google Scholar
12)Robin, T. and Souillard, B., Optics Comm, 71, 15 (1989)Google Scholar
13)Bergman, D.J., Phys. Resp. 43, 377 (1978) D.J. Bergman, Ann. Phys., 138, 78 (1982)Google Scholar
14)Essoh, C., Thèse de Doctorat, Université de Provence (1990) (in preparation)Google Scholar