Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T15:30:37.172Z Has data issue: false hasContentIssue false

A Simple Model for the Transient, Enhanced Diffusion of Ion-Implanted Phosphorus in Silicon

Published online by Cambridge University Press:  25 February 2011

F. F. Morehead
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.10598
R.T. Hodgson
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.10598
Get access

Abstract

Unlike As, B as well as P implanted into Si exhibits transient, enhanced diffusion. For example, when P implants are annealed for times of ~1 s at temperatures > 900°C, we observe a large movement of dopant toward the furnace of the Si wafer which is nearly independent of temperature 1050-1200°C. Once the temperature rises above 1200-1250°C the diffusion is similar to that normally observed. We model the experimental results as a transient, enhanced diffusion of a mobile component, about half the total phosphorus implant, distributed deeper in the bulk than the total P distribution. This mobile component may be linked to a large super-saturation of self-interstitials produced by the 50 keV implantation, which are expected to be left deeper in the bulk than the total dopant profile.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hodgson, R.T., Deline, V., Mader, S.M., Morehead, F.F., and Gelpey, J., Mat. Res. Soc. Symp. Proc, 23, 254 ( Elsevier, 1984).Google Scholar
2. Kalish, R., Sedgwick, T.O., Mader, S., Shatas, S., Appl. Phys. Lett. 44, 107 (1984).Google Scholar
3. Narayan, J., Holland, O.W., Eby, R.E., Wortman, J.J., Ozguz, V., and Rozgonyi, G.A., Appl. Phys. Lett. 43, 957 (1983).Google Scholar
4. Hofker, W.K., Philips Res. Repts. Suppl. 1975, No. 8.Google Scholar
5. Oehrlein, G.S., Cohen, S.A., and Sedgwick, T.O., Appl. Phys. Lett. 45, 417 (1984).Google Scholar
6. Hodgson, R.T., Deline, V.R., Mader, S., and Gelpey, J.C., Appl. Phys. Lett. 44, 589 (1984).Google Scholar
7. Morehead, F., unpublished.Google Scholar
8. Fair, R.B., Wortman, J.J., and Liu, J., J. Electrochem. Soc. 131, 2387 (1984).Google Scholar
9. Crowder, B.L. and Morehead, F.F., Appl. Phys. Lett. 14, 313 (1969).Google Scholar
10. Csepregi, L., Mayer, J.W., and Sigmon, T.W., Appl. Phys. Lett. 29, 92 (1976).Google Scholar
11. Tan, T.Y., Goesele, U., and Morehead, F.F., Appl. Phys. A, 31, 97 (1983).Google Scholar
12. Seidel, T.E. and MacRae, A.U., Tras. AIME 245, 491 (1969).Google Scholar
13. Ghez, R., Oehrlein, G.S., Sedgwick, T.O., Morehead, F.F., and Lee, Y.H., Appl. Phys. Lett. 45, 881 (1984).Google Scholar
14. Giles, M.D., private communication.Google Scholar