Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:26:14.299Z Has data issue: false hasContentIssue false

Silver Cluster Formation in Implanted A12O3 Single Crystals

Published online by Cambridge University Press:  21 February 2011

F.L. Freire Jr.
Affiliation:
Departamento de Fisica, PUC-Rio, Rio de Janeiro, 22452, Brazil
N. Broil
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, 38050, Italy
G. Mariotto
Affiliation:
INFM and Dipartimento di Fisica, Università di Trento, 38050, Italy
Get access

Abstract

Single crystals of sapphire were implanted at room temperature with 300 keV-Ag+. The metal precipitate was characterized by a multitechnique approach including RBS, optical absorption and Raman spectroscopy. RBS measurements were used to determine the depth-profiles of the implanted ions. Ag depth profiles, derived from RBS are in good agreement with the results predicted by Monte Carlo simulations. Linear absorption spectroscopy has been used to characterize the effects of the ion fluence on the optical properties of the metal colloids in the UV-Vis region. The broad absorption band due to the surface plasmon resonance shows an appreciable red-shift when the fluence of bombarding ions increases. Raman scattering from acoustic vibrations of the silver clusters progressively shifts toward the laser frequency with increasing implantation dose. From low-frequency Raman spectra an evaluation of the average size of metal aggregates was derived.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For a review: Flytzanis, C., Hache, F., Klein, M.C., Richard, D. and Rousugnol, Ph., in Progress in Optics, Vol. XXIX, Wolf, E. (ed.), (North Holland, Amesterdam, 1991) pp. 323411.Google Scholar
2 Buchal, Ch., Withrow, S.P., White, C.W. and Poker, D.B., Ann. Rev. Mater. Sci. 24 (1994) 125.Google Scholar
3 Arnold, G.W., Mazzoldi, P., Tramontin, L., Boscolo-Boscoletto, A. and Battaglin, G., Mat. Res. Soc. Symp. Proc. 279 (1993) 285.Google Scholar
4 Caccavalle, F., de Marchi, G., Gonella, F., Mazzoldi, P., Menegnini, C., quaranta, A., Arnold, G.W., Battaglin, G. and Mattel, G., Nucl. Instr. Meth. B (in press).Google Scholar
5 Magruder III, R.H., Osborne, D.H. Jr. and Zuhr, R.A., J. Non Cryst. Solids 176 (1994) 299.Google Scholar
6 Haglund, R.E. Jr., Osborne, D.H. Jr., Yang, L., Magruder III, R., White, C.W. and Zuhr, R.A., Mater. Res. Soc. Symp. Proc. 316 (1994) 421.Google Scholar
7 Henderson, D.O., Morgan, S.H., Mu, R., Chen, N., Magruder III, R.H., White, C.W. and Zuhr, R.A., Mat. Res. Soc. Symp. Proc. 279 (1993) 439.Google Scholar
8 Vollmer, M. and Kreibig, U., in Nuclear Physics Concepts in the study of Atomic Cluster Physics,Schmidt, R., Lutz, H.O. and Dreizler, R. (eds.)Springer-Verlag, berlin, 1992.Google Scholar
9 Porto, S.P.S. and Krishnan, R.S., J. Chem. Phys. 47 (1971) 1009.Google Scholar
10 Duval, E., Boukenter, A. and Champagnon, B., Phys. Rev. Lett. 56 (1986).Google Scholar
11 Mariotto, G., Montagna, M., Villani, G., Duval, E., Lafrant, S., Rzepka, E. and Mai, C., Europhys. Lett. 6 (1988) 239.Google Scholar
12 Fujii, M., Nagareda, T., Hayashi, S. and Yamamoto, K., Phys. Rev. B 44 (1991)6243.Google Scholar
13 Capobianco, J.A., Proulx, P.P., Adrianosolo, B. and Champagnon, B., Phys. Rev. B 43 (1991) 10031.Google Scholar
14 Tanaka, A., Onari, S. and Arai, T., Phys. Rev B 47 (1993) 1237.Google Scholar
15 Lipinska-Kalita, K.E., Mariotto, G. and Zanghellini, E., Phil. Mag. B 71 (1995) 547.Google Scholar