Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:56:50.808Z Has data issue: false hasContentIssue false

Silicon-Hydrogen Bonding and Hydrogen Diffusion in Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

Chris G. Van De Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. A. Street
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Despite its importance for technological applications, the behavior of hydrogen in amorphous silicon is not fully understood. In particular, the anomalously low activation energy (1.5 eV) for hydrogen diffusion has remained unexplained. We investigate the interaction of hydrogen with dangling bonds using first-principles pseudopotential-density-functional calculations. Our analysis shows that the diffusion activation energy should be measured from the hydrogen chemical potential, and that this level should be identified with the formation energy of Si-H bonds. A quantitative identification of the energy levels with experimental observables is then possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jackson, W.B. and Kakalios, J., in Amorphous Silicon and Related Materials, edited by Fritzsche, H., Advances in Disordered Semiconductors Vol. 1A (World Scientific, Singapore, 1989), p. 247.Google Scholar
2. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1966);Google Scholar
3. Hamann, D. R., Schlüter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979). For hydrogen, the Coulomb potential is used.Google Scholar
4. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
5. Van de Walle, C. G., Phys. Rev. B 49, 4579 (1994).Google Scholar
6. Van de Walle, C. G. and Street, R. A., Phys. Rev. B 49, 14766 (1994).Google Scholar
7. Carlson, D. E. and Magee, C. W., Appl. Phys. Lett. 33, 81 (1978).Google Scholar
8. Street, R., Physica B 170, 69 (1991).Google Scholar
9. Street, R., Phys. Rev. B 43, 2454 (1991).Google Scholar
10. Santos, P. V. and Jackson, W. B., Phys. Rev. B 46, 4595 (1992).Google Scholar
11. Kemp, M. and Branz, H. M., Phys. Rev. B 47, 7067 (1993).Google Scholar
12. Van Wieringen, A. and Warmoltz, N., Physica 22, 849 (1956).Google Scholar
13. Herring, C. and Johnson, N. M., in Hydrogen in Semiconductors, Semiconductors and Semimetals, Vol. 34, Ed. Pankove, J. I. and Johnson, N. M., (Academic Press, San Diego, 1991), p. 279.Google Scholar
14. Street, R. A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
15. Van de Walle, C. G. and Street, R. A., Phys. Rev. B. (in press).Google Scholar
16. Kelires, P. C. and Tersoff, J., Phys. Rev. Lett. 61, 562 (1988).Google Scholar
17. Street, R. A., Mat. Res. Symp. Proc. 95, 13 (1987).Google Scholar