No CrossRef data available.
Published online by Cambridge University Press: 06 September 2013
Silicon is a very promising material for anodes of lithium ion batteries. It exhibits a high theoretical capacity of 3579 mAh/g. However, during the lithiation and de-lithiation, silicon materials experience up to a 300% volume change, leading to poor cyclability [1-2]. Research shows that reducing the silicon particle size can mitigate this problem. Carbon nanotubes (CNTs) function well as electrode materials in electrolytic cells because of their high electrical conductivity and surface area. In this work, we combine silicon nanoparticles (Si NPs) and CNTs as anode materials. Si NPs are generated using a plasma-enhanced chemical vapor deposition technique and their surface is modified with a 12-carbon long aliphatic chain to impart solubility in non-polar solvents. They are applied onto a nanotube-based layer using a wet-phase deposition technique. SEM and TEM analysis confirm that they form a conformal coating onto the nanotube surface. The CNTs - Si NPs composite active material is tested in half-cells where lithium foil acts as counter electrode. We have achieved an average of 810 mAh/g discharge capacity for composites with a CNTs to Si NPs weight ratio of 1:1. We expect to be able to increase the discharge capacity by increasing the Si NPs weight content.