Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T02:22:25.244Z Has data issue: false hasContentIssue false

Silicon Nanowire Electromechanical Switch for Logic Device Application

Published online by Cambridge University Press:  01 February 2011

Qiliang Li
Affiliation:
[email protected], National Institute of Standards and Technology, Semiconductor Electronic Division, 100 Bureau Dr., Gaithersburg, MD, 20899, United States, 1-301-975-3241
Sang-Mo Koo
Affiliation:
[email protected], Kwangwoon University, Seoul, 139-701, Korea, Republic of
Monica D. Edelstein
Affiliation:
[email protected], National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
John S. Suehle
Affiliation:
[email protected], National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
Curt A. Richter
Affiliation:
[email protected], National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
Get access

Abstract

In this paper, we have reported the fabrication and characterization of nanowire electromechanical switches consisting of chemical-vapor-deposition grown silicon nanowires suspended over metal electrodes. The devices operate as transistors with the suspended part of the nanowire bent to touch metal electrode via electromechanical force by applying voltage. The reversible switching, large on/off current ratio, small subthreshold slope and low switching energy compared to current CMOSFET make the switches very attractive for logic device application. In addition, we have developed a physical model to investigate the switching characteristics and extract the material properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] ITRS, Emerging Research Devices, 2005 edition.Google Scholar
[2] Chen, R. H., Korotkov, A. N., and Likharev, K. K., Applied Physics Letters 68, 1954 (1996).Google Scholar
[3] Fay, P., Jiang, L., Xu, Y., Bernstein, G. H., Chow, D. H., Schulman, J. N., Dunlap, H. L., and Santos, H. J. De Los, Ieee Transactions on Electron Devices 48, 1282 (2001).Google Scholar
[4] Nikonov, D. E. and Bourianoff, G. I., Ieee Transactions on Nanotechnology 4, 206 (2005).Google Scholar
[5] Seminario, J. M., Derosa, P. A., Cordova, L. E., and Bozard, B. H., Ieee Transactions on Nanotechnology 3, 215 (2004).Google Scholar
[6] Li, Q., Koo, S.-M., Richter, C. A., Edelstein, M. D., Bonevich, J. E., Kopanski, J. J., Suehle, J. S., and Vogel, E. M., Ieee Transactions on Nanotechnology 6, 256 (2007).Google Scholar
[7] Wang, Z. L., Dai, Z. R., Gao, R. P., and Gole, J. L., Journal of Electron Microscopy 51, S79 (2002).Google Scholar
[8] Wong, E. W., Sheehan, P. E., and Lieber, C. M., Science 277, 1971 (1997).Google Scholar
[9] Jang, J. E., Cha, S. N., Choi, Y., Amaratunga, G. A. J., Kang, D. J., Hasko, D. G., Jung, J. E., and Kim, J. M., Applied Physics Letters 87, 163114 (2005).Google Scholar
[10] Wagner, R. S. and Ellis, W. C., Applied Physics Letters 4, 89 (1964).Google Scholar
[11] Givargizov, E. I., Journal of Crystal Growth 31, 20 (1975).Google Scholar
[12] Li, Q., Zhu, X., Xiong, H. D., Koo, S.-M., Ioannou, D. E., Kopanski, J. J., Suehle, J. S., and Richter, C. A., Nanotechnology 18, 235204 (2007).Google Scholar
[13] Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, vol. 2. New York: McGraw-Hill, 1953.Google Scholar
[14] Wunnicke, O., Applied Physics Letters 89, 083102 (2006).Google Scholar
[15] Gere, J. M. and Timoshenko, S. P., Mechanics of Materials, Third edition. BOSTON: PWS-KENT, 1991.Google Scholar
[16] Tang, Z., Xu, Y., Li, G., and Aluru, N. R., Journal of Applied Physics 97, 114304 (2005).Google Scholar
[17] Menon, M., Srivastava, D., Ponomareva, I., and Chernozatonskii, L. A., Physical Review B 70, 125313 (2004).Google Scholar
[18] Zheng, X. J. and Zhu, L. L., Applied Physics Letters 89, 153110 (2006).Google Scholar
[19] Taur, T. and Ning, T. H., Fundamentals of Modern VLSI Devices. New York: Cambridge University Press, 1998.Google Scholar