Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T18:06:34.911Z Has data issue: false hasContentIssue false

Silicon Interstitial Driven Loss of Substitutional Carbon from SiGeC Structures

Published online by Cambridge University Press:  21 March 2011

M. S. Carroll
Affiliation:
Dept. of Electrical Engineering, Princeton University, Princeton, NJ
J. C. Sturm
Affiliation:
Dept. of Electrical Engineering, Princeton University, Princeton, NJ
E. Napolitani
Affiliation:
INFM and Dept. of Physics, University of Padova, Padova, Italy
D. De Salvador
Affiliation:
INFM and Dept. of Physics, University of Padova, Padova, Italy
M. Berti
Affiliation:
INFM and Dept. of Physics, University of Padova, Padova, Italy
J. Stangl
Affiliation:
Institute for Semiconductor Physics, Johannes-Kepler University Linz, Linz, Austria
G. Bauer
Affiliation:
Institute for Semiconductor Physics, Johannes-Kepler University Linz, Linz, Austria
D. J. Tweet
Affiliation:
SHARP Laboratories of America Inc., Camas WA
Get access

Abstract

The effect of annealing silicon capped pseudomorphic Si0.7865Ge0.21C0.0035 or Si0.998C0.002 layers on silicon substrates in nitrogen or oxygen at 850°C was examined using x-ray diffraction (XRD) and secondary ion mass spectrometry (SIMS). Most substitutional carbon is lost from the alloy layers due to carbon out-diffusion rather than from precipitation. The carbon is found to diffuse more rapidly out of the SiGeC layer than the SiC layer after nitrogen and the carbon is found to leave the sample entirely, an effect that is enhanced by oxidation and thin cap layers. All substitutional carbon can be removed from the sample in some cases implying negligible formation of silicon-carbon complexes. Furthermore, it is found that each injected silicon interstitial atom due to oxidation causes the removal of one additional carbon atom for the SiGeC layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stolk, P. A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Poate, J. M., and Luft-mann, H. S., Appl. Phys. Lett. 66, 568 (1995)Google Scholar
[2] Warren, P., Mi, J., Overney, F., and Dutoit, M., J. of Crystal Growth 157, 414419, (1995)Google Scholar
[3] Strane, J. W., Stein, H. J., Lee, S. R., Picraux, S. T., Watanabe, J. K., Mayer, J. W., J. Appl. Phys. 76, 3656 (1994)Google Scholar
[4] Kulik, L.V., Hits, D.A., Dashiell, M. W., Kolodzey, J.,Appl.Phys. Lett. 72, 1972, (1998)Google Scholar
[5] Sturm, J. C., Schwartz, P. V., Prinz, E. J., Manoharan, H., J. Vac. Sci. Tech. B 9, 2011 (1991)Google Scholar
[6] Salvador, D. De., Petrovich, M., Berti, M., Romanato, F., Napolitani, E., Drigo, A., Stangl, J., Zerlauth, S., Muehlberger, M., Schaeffler, F., Bauer, G., Kelires, P. C.,Phys.Rev.B. 61, 13005 (2000)Google Scholar
[7] Scholz, R. F., Werner, P., Gosele, U., Tan, T. Y., Appl. Phys. Lett. 74, 392 (1999)Google Scholar
[8] Laddand, L.A. Kalejs, J. P. in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, Editors: Mikkelsen, , Pearton, , Corbett, , Pennycook, . Vol. 59, p 445. Materials Research Symposium Proceedings. Pittsburgh PA (1986)Google Scholar
[9] Carroll, M. S., Chang, C-L., Sturm, J. C., Buyuklimanli, T., Appl. Phys. Lett. 73, 3695 (1998)Google Scholar
[10] Dunham, S. T., J. Appl. Phys. 71, 685 (1992)Google Scholar
[11] Carroll, M. S. and Sturm, J. C. in Silicon Front-End Processing-Physics and Technology of Dopant-Defect Interactions II, Vol. 620. Material Research Symposium Proceedings. (to be published)Google Scholar
[12] Ruecker, H., Heinemann, B., Roepke, W., Kurps, R., Krueger, D., Lippert, G., Osten, H. J., Appl. Phys. Lett. 73, 1682 (1998)Google Scholar
[13] Bracht, H., Stolwijk, N. A., Mehrer, H., Phys. Rev. B 52, 16542 (1995)Google Scholar
[14] ”Carbon in monocrystalline Silicon”, Davies, G. and Newman, R. C. Handbook on Semiconductors, Editor: Moss, T. S.. Elsevier 1558 (1994)Google Scholar