No CrossRef data available.
Article contents
Silicided Shallow Junction Formation Using Ion Implantation and Thermal Annealing
Published online by Cambridge University Press: 25 February 2011
Abstract
The combination of arsenic and boron implantation with rapid thermal annealing (RTA) has been investigated to form shallow p-n junctions under a titanium silicide (TiSi2) metallization. The use of TiSi2 as a connection material can lead to the destruction of the junction if the kinetics of silicidation and doping are not well controlled. The purpose of this study is to better understand and control these kinetics, using far-from equilibrium processing such as ion implantation and RTA. The structures were characterized by Rutherford Backscattering Spectometry (RBS) for arsenic and silicide profiling, Secondary Ion Mass Spectometry (SIMS) for boron profiling, Scanning Electron Microscopy (SEM), and electrical sheet resistance measurements. Two procedures were investigated. Both involved the thermal reaction of Ti thin films, sputter-deposited with thicknesses ranging between 40 and 80 nm. In the first experiment, the as-deposited films were implanted with either 115 keV arsenic or 28 keV boron to form the junction, disperse the native oxide, and ion beam mix the Ti and Si. The films were then subjected to an RTA at 750°C for 15 to 60 seconds, which leads to TiSi2 formation in unimplanted films. Implantation was found to actually prevent TiSi2 formation. Ion transport calculations indicated that dopant pile-up at the interface might inhibit silicidation while higher energies and larger implant doses can more effectively ion beam mix Ti and Si. A more attractive solution consists of first forming TiSi2 from the as-deposited Ti by RTA, and then implanting to form the junction. This resulted in better control of the junction thickness. A sharp increase in the TiSi2 resistivity was found after implantation but the original value could be restored by a second RTA. This RTA also electrically activated the dopants and recrystallized the junction. The material properties of Ti/Si and TiSi2/Si under ion bombardment, RTA, doping, and conventional furnace annealing will be discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989