Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:40:21.548Z Has data issue: false hasContentIssue false

Silicide Mediated Grown Silicon Thin Films for Photodiodes

Published online by Cambridge University Press:  26 February 2011

Joondong Kim
Affiliation:
[email protected], Korea Institute of Machinery and Materials, Nano-Mechanical System research center, 171 Jang, Yuseong, Daejeon, 305343, Korea, Republic of, +82-9906-0272, +82-10-42-868-7123
Wayne A. Anderson
Affiliation:
[email protected], University at Buffalo, State University of New York, Electrical Engineering, Bonner Hall, Buffalo, NY, 14260, United States
Chang-Soo Han
Affiliation:
[email protected], Korea Institute of Machinery and Materials, Nano-Mechanical Systems, 171 Jang-dong, Yuseong, Daejeon, 304343, Korea, Republic of
Eung-Sug Lee
Affiliation:
[email protected], Korea Institute of Machinery and Materials, Nano-Mechanical Systems, 171 Jang-dong, Yuseong, Daejeon, 304343, Korea, Republic of
Get access

Abstract

Quality Si thin films were grown by the metal-induced growth (MIG) method. Metal (Co, Ni, or mixing of Co and Ni) was thermally evaporated on a 200 nm-SiO2 coated Si wafer. Si sputtering was performed at 600 – 620 °C in a dc magnetron system. The reaction of Si and metal first formed a silicide (CoSi2 or NiSi2) layer and further Si sputtering grew a Si film above it. The grown Si films were practically fabricated for Schottky photodiodes and electrically measured under one sun scan illumination (100 mW/cm2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Yoon, Y. -G., Kim, B. -D., Kim, M. -S., Choi, S. -H., and Joo, S. -K., J. Electro. Chem. Soc. 7 G151 (2004).Google Scholar
[2] McCulloch, D. J. and Brotherton, S. D., Appl. Phys. Lett. 66 2060 (1995).10.1063/1.113902Google Scholar
[3] Benatmane, A., Montgomery, P. C., Fogarassy, E., and Zahorski, D., Appl. Phys. Sci. 208 189 (2003).Google Scholar
[4] Shih, A., Meng, C. -Y., Lee, S. -C., and Chern, M. -Y., J. Appl. Phys. 88 3725 (2000).10.1063/1.1288784Google Scholar
[5] Kim, J., Anderson, W. A., Song, Y.-J, Kim, G. B., Appl. Phys. Lett. 86 (2005) 253101.Google Scholar
[6] Kim, J., Anderson, W.A., Nano letters 6 (2006) 1356.Google Scholar
[7] Imaizumi, M., Ito, T., Yamaguchi, M., Kaneko, K., J. Appl. Phys., 81 (1997) 7635.10.1063/1.365341Google Scholar
[8] Pakhomov, A. B., Denardin, J. C., de Lima, O. F., Knobel, M., Missell, F. P., J. Magn. Magn. Mater. 226 (2001) 1631.Google Scholar
[9] Ghosh, A. K., Fishman, C., Feng, T., J. Appl. Phys. 51, (1980) 446.10.1063/1.327342Google Scholar