Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-01T03:16:57.408Z Has data issue: false hasContentIssue false

SiC Nanowires by Silicon Carburization

Published online by Cambridge University Press:  01 February 2011

Loucas Tsakalakos
Affiliation:
[email protected], General Electric Global Research Center, Micro & Nano Structures Technologies, One Research Circle, KW-C1811, Niskayuna, NY, 12309, United States, 518-387-5715
Jody Fronheiser
Affiliation:
[email protected], General Electric Global Research Center, Niskayuna, NY, 12309, United States
Larry Rowland
Affiliation:
[email protected], General Electric Global Research Center, Niskayuna, NY, 12309, United States
Mohamed Rahmane
Affiliation:
[email protected], General Electric Global Research Center, Niskayuna, NY, 12309, United States
Michael Larsen
Affiliation:
[email protected], General Electric Global Research Center, Niskayuna, NY, 12309, United States
Yan Gao
Affiliation:
[email protected], General Electric Global Research Center, Niskayuna, NY, 12309, United States
Get access

Abstract

Polycrystalline SiC nanowires and composite Si nanowire-SiC nanograin structures have been synthesized using a combined catalytic chemical vapor deposition and carburization method. Si nanowires are grown at low temperature (550-650 C) and subsequently carburized at 1100-1200 C in a methane/hydrogen or propane/hydrogen environment. Thermochemical calculations showed that the Si carburization is thermodynamically favorable over a wide tempareture range, whereas our studies showed that the Si nanowire carburization is kinetically limited below ∼1100 °C. Partially carburized nanowires contained distinct SiC nanosized grains on the Si nanowire surface, whereas fully carburized nanowires were polycrystalline 3C SiC with grain sizes of ∼ 50-100 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duan, X., and Lieber, C. M., J. Am. Chem. Soc. 122, 188 (2000).Google Scholar
2. Cui, Y., Duan, X., Hu, J., and Lieber, C. M., J. Phys. Chem. B 104, 5213 (2000).Google Scholar
3. Huang, Y., Duan, X., Cui, Y., M., C. and Lieber, , Nano Lett. 2, 101 (2002).Google Scholar
4. Wu, Y., Fan, R., and Yang, P., Nanowires. Nano Lett., 2, 83 (2002).Google Scholar
5. Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., and Zhou, C., Appl. Phys. Lett. 82, 1613 (2003).Google Scholar
6. Cui, Y., Wei, Q., Park, H., Lieber, C. M., Science 293, 1289 (2001).Google Scholar
7. Kang, B. C. et al. Thin Solid Films 464, 215 (2004).Google Scholar
8. Lin, M., Loh, K. P., Boothroyd, C., and Du, A. Appl. Phys. Lett. 85, 5388(2004).Google Scholar
9. Kim, H. Y., Chem. Comm. 256 (2003).Google Scholar
10. Pan, Z. et al. Adv. Mater. 12 (2000).Google Scholar
11. Feng, D. H. et al., Solid State Comm. 128, 295 (2003).Google Scholar
12. Wong, K. W., Zhou, X. T., Au, Frederick C. K., Lai, H. L., Lee, C. S., and Lee, S. T. Appl. Phys. Lett. 75, 2918 (1999).Google Scholar
13. Yang, T. H. et al., Chem. Phys. Lett. 379, 155 (2003).Google Scholar
14. Wagner, R. S., and Ellis, W. C., V Appl. Phys. Lett. 4, 89 (1964).Google Scholar
15. Zhang, Y., Nishitani-Gamo, M., Xiao, C., and Ando, T., J. Appl. Phys. 91, 6066 (2002).Google Scholar
16. Tsakalakos, L., Rahmane, M., Larsen, M., Gao, Y., Denault, L., Wilson, P., Balch, J., J. Appl. Phys. 98, 04317 (2005).Google Scholar
17. Cimalla, V., Karagodina, K.V., Pezoldt, J., and Eichhorn, G., Mater. Sci. Eng. B 29, 170 (1995).Google Scholar
18. Zorman, C. A., Fleischman, A. J., Dewa, A. S., Mehregany, M., Jacob, C., Nishino, S., and Pirouz, P., J. Appl. Phys. 78, 5136 (1995).Google Scholar
19. Fronheiser, J., Tsakalakos, L., Rowland, L., Gao, Y., Larsen, M., unpublishedGoogle Scholar