Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T15:03:38.721Z Has data issue: false hasContentIssue false

SiC Bipolar Power Transistors - Design and Technology Issues for Ultimate Performance

Published online by Cambridge University Press:  01 February 2011

Mikael Ostling
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Martin Domeij
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Carina Zaring
Affiliation:
[email protected], TranSiC AB, Kista, Sweden
Andreij Konstantinov
Affiliation:
[email protected], TranSiC AB, Kista, Sweden
Reza Ghandi
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Benedetto Buono
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Anders Hallen
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Carl-Mikael Zetterling
Affiliation:
[email protected], Royal Institute of Technology, School of ICT, Kista, Sweden
Get access

Abstract

Silicon carbide (SiC) semiconductor devices for high power are becoming more mature and are now commercially available as discrete devices. Schottky diodes have been on the market since a few years but also bipolar junction transistors (BJTs), JFETs and MOSFETs are now reaching the market. The interest is rapidly growing for these devices in high power and high temperature applications. The BJTs have low conduction losses, fast switching capability, operate in normally-off mode, have high radiation hardness, and can handle high power density.

This paper will review the current state of the art in active switching device performance with special emphasis on BJTs. Device performance has been demonstrated over a wide temperature interval. A very important feature in high power switch applications is the low on-resistance of a device. Better material quality and epi processes suppress the amount of basal plane dislocations to avoid stacking fault formation generated during high current injection. This has long been a concern for bipolar SiC devices but several research reports and long term reliability measurements of pn-junctions show that the bipolar degradation problem can be solved by a fine-tuned epitaxial technique. A discussion on surface passivation control is included.

Finally, an example of a power switching module is given also demonstrating the excellent paralleling capability of BJTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zetterling, C.-M., Ed., “Process technology for silicon carbide devices,” in EMIS processing series, IEE, 2002.Google Scholar
2 Östling, M., Koo, S.-M., Domeij, M., Danielsson, E., and Zetterling, C.-M., “SiC Device Technologies,” in Encyclopedia of RF and Microwave Engineering: John Wiley & Sons, Inc., 2005, pp. 46134619 Google Scholar
3 Huang, C-F., Kan, C-L., Wu, T-L., Lee, M-C., Liu, Y-Z., Lee, K-Y., and Zhao, F., IEEE Electron Device Letters, vol. 30, no. 9, (2009) pp. 957959.Google Scholar
4 Ghandi, R., Lee, H-S., Domeij, M., Buono, B., Zetterling, C-M., and Östling, M., IEEE Electron Device Letters, vol. 29, no. 10 (2008) pp.11351137.Google Scholar
5 Lee, H-S., Domeij, M., Zetterling, C-M., Östling, Mikael, Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Letters, vol. 28, no. 11, (2007) pp. 10071009.Google Scholar
6 Zhang, J., Alexandrov, P., Zhao, J.H., Materials Science Forum, v 600–603, (2009) pp. 11551158.Google Scholar
7 Noborio, M., Suda, J., and Kimoto, T., IEEE Electron Device Letters, vol. 30, no. 8 (2009) pp. 831833.Google Scholar
8 Cheng, L., Sankin, I., Bondarenko, V., Mazzola, M. S., Scofield, J. D., Sheridan, D. C., Martin, P., Casady, J. R. B., and Casady, J. B., Materials Science Forum Vols. 600–603 (2009) pp 10551058.Google Scholar
9 Veliadis, V., McNutt, T., Snook, M., Hearne, H., Potyraj, P., and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 10, (2008) pp.11321134.Google Scholar
10 Jonas, C., Cappel, C., Burk, A., Zhang, Q., Callanan, R., Agarwal, A., Geil, B., and Scozzie, C., Journal of Electronic Materials, vol. 37, no. 5, (2008) pp. 662665.Google Scholar
11 Li, Y., Alexandrov, P., and Zhao, J. H., IEEE Transactions on Electron Devices, vol. 55, no. 8 (2008) pp.18801886.Google Scholar
12 Veliadis, V., Snook, M., McNutt, T., Hearne, H., Potyraj, P., Lelis, Aivars, and Scozzie, C., IEEE Electron Device Letters, vol. 29, no. 12 (2008) pp.13251327.Google Scholar
13 Ritenoura, A., Bondarenko, V., Kelley, R., and Sheridan, D. C., Materials Science Forum Vols. 615–617 (2009) pp. 715718.Google Scholar
14 Hull, B. A., Jonas, C., Ryu, S-H, Das, M., O'Loughlin, M., Husna, F., Callanan, R., Richmond, J., Agarwal, A., Palmour, J. and Scozzie, C., Materials Science Forum Vols. 615–617 (2009) pp. 749752.Google Scholar
15 Nonaka, K., Horiuchi, A., Negoro, Y., Iwanaga, K., Yokoyama, S., Hashimoto, H., Sato, M., Maeyama, Y., Shimizu, M. and Iwakuro, H., Materials Science Forum Vols. 615–617 (2009) pp. 821824.Google Scholar
16 Zhang, J., Fursin, L., Li, X., Wang, X., Zhao, Jian H., VanMil, B. L., M-Ward, R. L., Eddy, C. R. Jr, and Gaskill, D. K., Materials Science Forum Vols. 615–617 (2009) pp. 829832.Google Scholar
17 Sheridan, D.C., Ritenour, A., Bondarenko, V., Burks, P., and Casady, J.B., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009) pp. 335338.Google Scholar
18 Zhang, Q., Burk, A., Husna, F., Callanan, R., Agarwal, A., Palmour, J., Stahlbush, R., and Scozzie, C., Proceeding of 21st International Symposium on Power Semiconductor Devices & IC's, (2009), pp. 339342.Google Scholar
19 Matochaa, K., Stumb, Z., Arthurc, S., Dunned, G. and Stevanovic, L., Materials Science Forum Vols. 600–603 (2009) pp 11311134.Google Scholar
20 Ryu, S.-H., Krishnaswami, S., O'Loughlin, M., Richmond, J., Agarwal, A., Palmour, J., and Hefner, A.R., IEEE Electron Device Letters, vol. 25, p. 556, 2004.Google Scholar
21 Ryu, S.-H., Agarwal, A., Richmond, J., Das, M., Lipkin, L., Palmour, J., Saks, N., and Williams, J., Materials Science Forum Vols. 389–393 (2002) pp. 11951198.Google Scholar
22 Tan, J., Cooper, J. A. Jr, and Melloch, M. R., IEEE Electron Device Letters, vol. 19, (1998), p. 487.Google Scholar
23 Zhang, J., Zhao, J. H., Alexandrov, P., and Burke, T., Electronics Letters, vol. 40 (2004) p. 1381.Google Scholar
24 Balachandran, S., , Li. C., Losee, P.A., Bhat, I.B., and Chow, T. P., Proceeding of 19th International Symposium on Power Semiconductor Devices & IC's, (2007), pp. 293296.Google Scholar
25 Zhao, J. H., Tone, K., Alexandrov, P., Fursin, L., and Weiner, M., IEEE Electron Device Letters, vol. 24 (2003) p. 81.Google Scholar
26 Zhao, J. H., Alexandrov, P., Zhang, J., and Li, X., IEEE Electron Device Letters, vol. 25 (2004) p. 474.Google Scholar
27 Domeij, M., Zaring, C., Konstantinov, A.O., Nawaz, M., Svedberg, J-O., Gumaelius, K., Keri, I., Lindgren, A., Hammarlund, B., Östling, M., Reimark, M., Materials Science Forum Vols. 645–648 (2010) pp 10331036 Google Scholar
28 Ghandi, R., Buono, B., Domeij, M., Malm, G., Zetterling, C.-M. and Östling, M., IEEE Electron Device Letters, vol. 30 (11) (2009) p. 11701172.Google Scholar
29 Porter, L.M., “Thermal Stability and Defects in Contacts to Silicon Carbide,” in Wide Band Gap Materials and New Developments, Syväjärvi, M. and Yakimova, R., eds. (Research Signpost, Kerala, India) pp. 187208, 2006 Google Scholar
30 Lundberg, N. and Östling, M., Solid-State Electronics, vol. 39, pp. 15591565, 1996 Google Scholar
31 Ghandi, R., Domeij, M., Esteve, R., Buono, B., Schoner, A., Han, J., Dimitrijev, S., Reshanov, S.A., Zetterling, C.-M., Ostling, M., Materials Science Forum, vols. 645–648 (2010) pp 661664.Google Scholar
32 Lee, H.-S., Domeij, M., Zetterling, C.M., Östling, M., Allerstam, F., and Sveinbjörnsson, E.Ö., IEEE Electron Device Lett, Vol. 28, No. 11, p 1007 (2007)Google Scholar
33 Nawaz, M., Zaring, C., Onoda, S., Ohshima, T. and Östling, M., Proceedings of 67th Device Research Conference, The Pennsylvania State University, University Park, PA, June 22-24 2009, p. 279280 Google Scholar
34 Cartiglia, N., Dorfan, D.E., Pitzl, D., Rahn, J., Rowe, W.A., Sadrozinski, H.F.-W., Spencer, E.N., and Wilder, M., Conf. Rec. 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.92CH3232-6), p 819–21 vol.2, (1992)Google Scholar
35 Sutton, A.K., Haugerud, B.M., Prakash, A.P.G., Jun, B., Cressler, J.D., Marshall, C., Marshall, P., Ladbury, R., Guarin, F., and Joseph, A.J., IEEE Trans. Nucl. Science, 52, p. 2358 (2005)Google Scholar
36 Hallén, A., Nawaz, M., Zaring, C., Usman, M., Domeij, M., and Östling, M., IEEE Electron Device Letters, In press.Google Scholar
37 Skowronski, M. and Ha, S.: J. Appl. Phys. Vol. 99 (2006) p. 011101.Google Scholar
38 Konstantinov, A., Domeij, M., Zaring, C., Keri, I., Svedberg, J.-O., Gumaelius, K., Östling, M. and Reimark, M.. Materials Science Forum vols. 645–648 (2010) pp 10571060.Google Scholar
39 Sumakeris, J.J., Bergman, J.P., Das, M.K., Hallin, C., Hull, B.A., Janzén, E., Lendenmann, H., O'Loughlin, M.J., Paisley, M.J., Ha, S.Y., Skowronski, M., Palmour, J.W. and Carter, C.H. Jr. Materials Science Forum vols. 527–529 (2006) pp 141146.Google Scholar
40 Kallinger, B., Thomas, B. and Friedrich, J.. Materials Science Forum Vols. 600–603 (2009) pp. 143146.Google Scholar
41 Franke, W.-T. and Fuchs, F.W, 13th European Conference on Power Electronics Power Electronics and Applications, 2009. EPE '09. (p. 110)Google Scholar
42www.transic.com (http://www.transic.com/index.php/news/78-transic-successfully-designs-sic-power-modules-for-high-power-applications) 2009 Google Scholar