Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:08:35.079Z Has data issue: false hasContentIssue false

Short-Range Order in α-Brass

Published online by Cambridge University Press:  21 February 2011

L. Reinhard
Affiliation:
Angewandte Physik, ETH Zürich, CH-8093 Zürich, Switzerland now at Physics Department, University of Houston, Houston, TX 77204-5504
B. Schoenfeld
Affiliation:
Angewandte Physik, ETH Zürich, CH-8093 Zürich, Switzerland
G. Kostorz
Affiliation:
Angewandte Physik, ETH Zürich, CH-8093 Zürich, Switzerland
W. Buehrer
Affiliation:
Lab. f. Neutronenstreuung der ETHZ, CH-5303 WUrenlingen, Switzerland
Get access

Abstract

Quenched equilibrium states of Cu–31.1 at.% Zn and Cu–22.4 at.% Zn single crystals (prepared with the Cu-65 isotope) were investigated by elastic diffuse neutron scattering. The diffuse intensity showed maxima which are attributed to the flat portions of the Fermi surface in the <110> directions. Short–range order parameters and linear displacement parameters were obtained from a fit to the measured data. Pair interaction energies were determined based on the inverse Monte–Carlo method. An ordered low-temperature phase Cu3Zn with the DO23 structure is suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stocks, G.M., Boring, M., Nicholson, D.M., Pinski, F.J., Johnson, D.D., Faulkner, J.S., and Gyorffy, B.L., in Noble Metal Alloys, edited by Massalski, T.B., Pearson, W.B., Bennett, L.H., and Chang, Y.A. (Proceedings of the Metallurgical Society of AIME Annual Meeting, 1985), p. 27.Google Scholar
2. Pfeiler, W., Reihsner, R., and Trattner, D., Scripta Metall. 19, 199 (1985).Google Scholar
3. Halbwachs, M., Beretz, D., and Hillairet, J., Acta Metall. 27, 463 (1979).Google Scholar
4. Obenhuber, Th., Adlassnig, W., Närger, U., Zänkert, J., Potzel, W., and Kalvius, G.M., Europhys. Lett. 3, 989 (1987).CrossRefGoogle Scholar
5. Keating, D.T., Acta Metall. 2, 885 (1954).CrossRefGoogle Scholar
6. Gerold, V. and Kern, J., Acta Metall. 35, 393 (1987).CrossRefGoogle Scholar
7. Sluiter, M., Turchi, P.E.A., Nicholson, D.M., Stocks, G.M., Johnson, D.D., and Pinski, F.J., this symposium.Google Scholar
8. Schwartz, L.H. and Cohen, J.B., Diffraction from Materials, 2nd ed. (Springer, Berlin, 1987), p. 402.Google Scholar
9. Reinhard, L., B. Schönfeld, Kostorz, G., and Bührer, W., to be published in Phys. Rev. B.Google Scholar
10. Moss, S.C., Phys. Rev. Lett. 22, 1108 (1969).Google Scholar
11. Clapp, P.C. and Moss, S.C., Phys. Rev. 142, 418 (1966).Google Scholar
12. Moss, S.C. and Walker, R.H., J. Appl. Cryst. 8, 96 (1975).Google Scholar
13. Gyorffy, B.L. and Stocks, G.M., Phys. Rev. Lett. 50, 374 (1983).CrossRefGoogle Scholar
14. Haghgooie, M., Berko, S., and Mizutani, U., in Proceedings of the Fifth International Conference on Positron Annihilation, edited by Hasiguti, R.R. and Fujirawa, K. (Japan Institute of Metals, Sendai, 1979), p. 291.Google Scholar
15. Prasad, R., Papadopoulos, S.C., and Bansil, A., Phys. Rev. B 23, 2607 (1981).CrossRefGoogle Scholar
16. Roth, L.M., Zeiger, H.J., and Kaplan, T.A., Phys. Rev. 149, 519 (1966).Google Scholar
17. Binder, K., in Monte Carlo Methods in Statistical Physics, edited by Binder, K. (Springer, Berlin, 1979), p. 1.Google Scholar