Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T18:52:48.171Z Has data issue: false hasContentIssue false

Shape Transition in Self-Organized InAs/InP Nanostructures

Published online by Cambridge University Press:  17 March 2011

H.R. Gutiérrez
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081-970 Campinas-SP, Brazil
M.A. Cotta
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081-970 Campinas-SP, Brazil
M.M.G. de Carvalho
Affiliation:
Instituto de Física Gleb Wataghin, DFA/LPD, UNICAMP, CP 6165, 13081-970 Campinas-SP, Brazil
Get access

Abstract

In this letter we report the transition from self-assembled InAs quantum-wires to quantumdots grown on (100) InP substrates. This transition is obtained when the wires are annealed at the growth temperature. Our results suggest that the quantum-wires are a metastable shape originated from the anisotropic diffusion over the InP buffer layer during the formation of the first InAs monolayer. The wires evolve to a more stable shape (dot) during the annealing. The driving force for the transition is associated with variations in the elastic energy and hence in the chemical potential produced by height fluctuations along the wire. The regions along the wires with no height variations are more stable allowing the formation of complex, self-assembled nanostructures such as dots interconnected by wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mendonça, C.A.C., Cotta, M.A., Meneses, E.A. and Carvalho, M.M.G. Phys.Rev. B 57 12501 (1998).Google Scholar
2.Gonzalez, L., Garcia, J.M., Garcia, R., Briones, F., Martinez-Pastor, J. and Ballesteros, C.. Appl. Phys. Lett. 76 1104 (2000).Google Scholar
3.Walther, C., Hoerstel, W., Niehus, H., Erxmeyer, J. and Masselink, W.T.. J. Cryst. Growth 209 572 (2000).Google Scholar
4.Wu, J., Zeng, Y.P., Sun, Z.Z., Lin, F., Xu, B. and Wang, Z.G.. J. Cryst. Growth 219 180 (2000).Google Scholar
5.Brault, J., Gendry, M., Grenet, G. and Hollinger, G.. Appl. Phys. Lett. 73 2932 (1998).Google Scholar
6.Nabetani, Y., Ishikawa, T., Noda, S. and Sasaki, A.. J. Appl. Phys. 76 347 (1994).Google Scholar
7.Pashley, D.W., Neave, J.H. and Joyce, B.A.. Surf. Sci. 476 35 (2001).Google Scholar
8.Barabási, A.L.. Appl. Phys. Lett. 70 2565 (1997).Google Scholar
9.Cotta, M.A., Hamm, R.A., Staley, T.W., Chu, S.N.G., Harriott, L.R., Panish, M.B. and Temkin, H.. Phys.Rev.Lett. 70 4106 (1993).Google Scholar
10.Pashley, M.D., Haberern, K.W. and Gaines, J.M.. J. Vac. Sci. Technol. B 9 938 (1991).Google Scholar
11.Shiraishi, K.. Appl. Phys. Lett. 60 1363 (1992).Google Scholar
12.Guo, Q., Pemble, M.E., Williams, E.M.. Surf. Sci. 433 410 (1999).Google Scholar