Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T22:56:41.711Z Has data issue: false hasContentIssue false

Shape and Size Effect on Ultrafine Metallic Particles

Published online by Cambridge University Press:  15 February 2011

Keisaku Kimura*
Affiliation:
Himeji Institute of Technology, Department of Material Science, Science Garden City, Hyogo 678-12, Japan
Get access

Abstract

The effect of size and shape on the electronic state of ultrafine metallic particles is described with the critical review of so far proposed experimental and theoretical results. The temperature dependence of the spin susceptibility of small metal particles is presented as function of size, shape, spin-orbit interaction of the elements, and magnetic field strength. Based upon a proposed formula, the spin susceptibility of small Mg particles is precisely analyzed with the view point of shape effect. It is emphasized that the exogenous impurities have crucial effect. on the magnetic properties of small metal particles. It is clarified that the confusion in the magnetic experiments originates from the extrinsic magnetic effect. The deviation of the nature of chemical bond in small size systems from that in bulk is briefly outlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Kubo, R., J.Phys.Soc.Jpn. 17, 975(1962).Google Scholar
2) Ziman, J.M., Principles of the Theory of Solids, (Cambridge Press, 1965), p.287.Google Scholar
3) Millet, J.L. and Borel, J.P., Surf.Sci. 106, 403(1981).Google Scholar
4) Millet, J.L. and Borel, J.P., Solid State Commun. 43, 217(1982).Google Scholar
5) Pasche, S. and Borel, J.P., Solid State Commun. 58, 865(1986).Google Scholar
6) Pasche, S. and Borel, J.P., Z.Phys. D 12,401(1989).Google Scholar
7) Bandow, S. and Kimura, K., Solid State Commun. 73, 167(1990).CrossRefGoogle Scholar
8) Kimoto, K. and Nishida, I., Jpn.J.Appl.Phys. 6, 1047(1967).Google Scholar
9) Yatsuya, S., Kasukabe, S. and Uyeda, R., Jpn.J.Appl.Phys. 12, 1675(1973).CrossRefGoogle Scholar
10) Kimura, K. and Bandow, S., Bull.Chem.Soc.Jpn. 56, 3578(1983).CrossRefGoogle Scholar
11) Kimura, K. and Bandow, S., Phys.Rev. B 37, 4473(1988).Google Scholar
12) Lunsford, J.H. and Jayne, J.P., J.Chem.Phys. 44, 1487(1986).Google Scholar
13) Kimura, K. and Hayashi, H., Phys.Rev. 41, 10185(1990).Google Scholar
14) Bandow, S. and Kimura, K., Solid State Commun. 75, 473(1990).Google Scholar
15) Denton, R., Muelschlegel, B. and Scalapino, D., Phys.Rev. B 7, 3589(1973).Google Scholar
16) Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandy, A., Wong, S.S.M., Rev.Mod. Phys. 53,385(1981).CrossRefGoogle Scholar
17) Tanaka, S. and Sugano, S., Phys.Rev. B 34, 740(1986).Google Scholar
18) Bucher, J.P., Xia, P. and Bloomfield, L.A., Phys.Rev. B 42, 10858(1990).Google Scholar
19) Kimura, K., Z.Phys. D 11,327(1989).Google Scholar
20) Kimura, K., Phase Transitions, 24–26, 493(1990).Google Scholar
21) Kimura, K., Phys.Rev. B 42, 6939(1990).CrossRefGoogle Scholar
22) Yee, P. and Knight, W.D., Phys.Rev.B 11, 3261(1975).CrossRefGoogle Scholar
23) Kobayashi, S. and Katsumoto, S., J,.Phys.Soc.Jpn. 56, 2256(1987).CrossRefGoogle Scholar