Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T19:07:10.098Z Has data issue: false hasContentIssue false

Sequential Characterization of the Hydration Products of Cements with Additions by a Combination of Destructive and Non-Destructive Techniques: Calorimetry, XRD, AFM and EIS

Published online by Cambridge University Press:  01 February 2011

E. Menéndez
Affiliation:
Institute “Eduardo Torroja” of Construction Science (CSIC). C/ Serrano Galvache, 4, 28033Madrid (Spain)
J. De Frutos
Affiliation:
POEMMA R&D Group. ETSIT (UPM). Ciudad Universitaria, s/n – 28040 Madrid (Spain) Email: [email protected].
Get access

Abstract

In this paper a comparative study of the hydration process in a very early age, first 20 hours, between a conventional cement paste and its equivalent with a replacement of fly ash of about 7.9%, is done. The study was undertaken through semiadibatic calorimetry, electrical impedance spectroscopy and X-ray diffraction. It shows that using electrical impedance spectroscopy we can determine the state of crystallization of the material with and without additions, thereby determining the time at which the different processes are started in the hydration

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bars, J.P., Camps, J.P., Debuigne, J., Mater. Constr. 15, 33 (1982).Google Scholar
2. McCarter, W.J., Garvin, S., Bouzid, N., J. Mater. Sci. Lett. 7 (10), 1056 (1988).Google Scholar
3. McCarter, W.J., Brousseau, R., Cem. Concr. Res. 20, 891 (1990).Google Scholar
4. Scuderi, C.A., Mason, T.O., Jennings, H.M., J. Mater. Sci. 26, 349 (1991)Google Scholar
5. Christensen, B.J., Mason, T.O., Jennings, H.M., J. Am. Ceram. Soc. 75 (4), 939 (1992).Google Scholar
6. Gu, P., Xu, Z., Xie, P., Beaudoin, J.J., Cem. Concr. Res. 23, 531 (1993)Google Scholar
7. Andrade, C., Soler, L., J. deFrutos Bol. Soc. Cer. Vid., 34 (5–6), 414 (1995).Google Scholar
8. De Frutos, J., Calzada, M. L., Menéndez, E., J. Mat Sci, 30 (11), 2866 (1995)Google Scholar
9. Christensen, B.J., Coverdale, R.T., Olson, R.A., et all J. Am. Ceram. Soc. 77, 2789 (1994).Google Scholar
10. Kim, H.C., Kim, S.Y., Yoon, S.S., J. Mater. Sci. 30, 3768 (1995).Google Scholar
11. Xie, P., Gu, P., Xu, Z., Beaudoin, J.J., Cem. Concr. Res. 23, 359 (1993)Google Scholar
12. Gu, P., Xie, P., Beaudoin, J.J., Adv. Cem. Res. 5, 171 (1993).Google Scholar
13. Coverdale, R.T., Christensen, B.J., Jennings, H.M., et all, J. Mater. Sci. 30, 712 (1995).Google Scholar
14. de Frutos, J., Soler, L., Andrade, C.. Bol. Soc. Esp. Ceram. Vidr., 38 (6), 607 (1999)Google Scholar
15. Dotelli, G., Mari, C.M., Mater. Sci. Eng. A 303, 54 (2001).Google Scholar
16. Brantervik, K., Niklasson, G.A., Cem. Concr. Res. 21, 496 (1991)Google Scholar
17. Song, G., Cem. Concr. Res. 30, 1723 (2000).Google Scholar
18. Kim, Young-Min, Lee, Jong-Heun, Hong, Seong-Hyeon. Cem. Conc. Res. 33, 299 (2003).Google Scholar
19. Sánchez, I., Nóvoa, X.R., de Vera, G., Climent, M.A.. Cem. Conc. Res. 38 (7),1015 (2008)Google Scholar
20. Koleva, D.A.; de Wit, J.H.W.; van Breugel, K., et all. Mat. Char. 59. 801 (2008).Google Scholar
21. Gordana, S.; Ljubica, C., S. Sivro y M. Srdan. J. Serb. Chem. Soc. 72 (6) 591 (2007).Google Scholar
22. EN 196:4:2005. (Method of Langabant calorimetry) (2005).Google Scholar
23. Menéndez, E. and de Frutos, J.. Rev. Mex. Fis. 55, 76 (2009).Google Scholar