Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:14:14.289Z Has data issue: false hasContentIssue false

Semiconductive Behavior of Sb Doped SnO2 Thin Films

Published online by Cambridge University Press:  15 February 2011

K.-O. Grosse-Holz
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands Institute for electrical engineering materials, RWTH Aachen, 52056 Aachen, Germany, grosse @ natlab.research.philips.com
J. F. M. Cillessen
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
M. W. J. Prins
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
P. W. M. Blom
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. M. Wolf
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
L. F. Feiner
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. Waser
Affiliation:
Institute for electrical engineering materials, RWTH Aachen, 52056 Aachen, Germany, grosse @ natlab.research.philips.com
Get access

Abstract

Sb doped SnO2 has been deposited on polished ceramic Al2O3 substrates by Pulsed Laser Deposition. Conductivity, charge carrier density and mobility of these thin films have been measured as a function of temperature. A model for the electrical properties of the films is proposed. Since Sb doped SnO2 is a transparent, high mobility material, it is shown that it can be used as channel material for an all-oxide thin film transparent field-effect transistor with a linear dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Seager, C. H., McIntyre, D., Tuttle, B. A., J. Evans; Integrated Ferroelectrics 6, 47 (1995)Google Scholar
2 Watanabe, Y., Appl. Phys. Lett. 66, 1770 (1995)Google Scholar
3 Cillessen, J. F. M., Wolf, R. M., Giesbers, J. B., Blom, P. W. M., Grosse-Holz, K.-O., Pastoor, E., accepted for publication in Appl. Surf. Sci.Google Scholar
4 Prins, M. W. J., Grosse-Holz, K.-O., Müller, G., Cillessen, J. F. M., Giesbers, J. B., Weening, R. P., Wolf, R. M., submittedGoogle Scholar
5 Jarzebski, Z. M., Marton, J. P., J. Electrochem. Soc. 123 (9), 299C (1976)Google Scholar
6 Fonstad, C. G., Rediker, R. H., J. Appl. Phys. 42 (7), 2911 (1971)Google Scholar
7 Jarzebski, Z. M., Marton, J. P., J. Electrochem. Soc. 123 (10), 333C (1976)Google Scholar
8 Chopra, K. L., Major, S., Pandya, D. K., Thin Solid Films 102, 1 (1983)Google Scholar
9 Pauw, L. J. van der, Philips Res. Rep. 13 (1), 1 (1958)Google Scholar
10 Seeger, K., Semiconductor Physics (Springer, Wien, New York, 1973)Google Scholar
11 Moore, E. J., Phys. Rev. 160 (3), 618 (1967)Google Scholar
12 Srikant, V., Sergo, V., Clarke, D. R., J. Am. Ceram. Soc. 78 (7), 1935 (1995)Google Scholar
13 Maier, J., Gopel, W., J. Sol. State Chem. 72, 293 (1988)Google Scholar
14 Sze, S. M., Physics of semiconductor devices (Wiley, New York, 1981)Google Scholar