Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:02:28.505Z Has data issue: false hasContentIssue false

Self-Organized Superlattices in GaInAsSb Grown on Vicinal Substrates

Published online by Cambridge University Press:  01 February 2011

C.A. Wang
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420–9108
C.J. Vineis
Affiliation:
now at AmberWave Systems Corporation, Salem, NH 03079
D.R. Calawa
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420–9108
Get access

Abstract

Self-organized superlattices are observed in GaInAsSb epilayers grown lattice matched to vicinal GaSb substrates. The natural superlattice (NSL) is oriented at a slight angle of about 4° with respect to the vicinal (001) GaSb substrate. This vertical composition modulation is detected at the onset of growth. Layers in the NSL are continuous over the lateral extent of the substrate. Furthermore, the NSL persists throughout several microns of deposition. The NSLs have a period ranging from 10 to 30 nm, which is dependent on deposition temperature and GaInAsSb alloy composition. While the principle driving force for this type of phase separation is chemical, the mechanism for the self-organized microstructure is related to local strains associated with surface undulations. By using a substrate with surface undulations, the tilted NSL can be induced in layers with alloy compositions that normally do not exhibit this self-organized microstructure under typical growth conditions. These results underscore the complex interactions between compositional modulation and morphological perturbations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zunger, A. and Mahajan, S., Handbook of Semiconductors, edited by Moss, T.S. (Elsevier Science, Amsterdam, 1994), Vol. 3, p. 1399.Google Scholar
2. Suzuki, T., Gomyo, A., and Iijima, S., J. Cryst. Growth 93, 396 (1988).Google Scholar
3. Chen, G.S., Jaw, D.H., and Stringfellow, G.B., Appl. Phys. Lett. 57, 2475 (1990).Google Scholar
4. Jen, H.R., Jou, M.J., Cherng, Y.T., and Stringfellow, G.B., J. Cryst. Growth 85, 175 (1987).Google Scholar
5. Norman, A.G., Seong, T.-Y., Ferguson, I.T., Booker, G.R., and Joyce, B.A., Semicond. Sci. Technol. 8, S9 (1993).Google Scholar
6. Jun, S.W., Seong, T.-Y., Lee, J.H., and Lee, B., Appl. Phys. Lett. 68, 3443 (1996).Google Scholar
7. Shin, B., Lin, A., Lappo, K., Goldman, R.S., Hanna, M.C., Francoeur, S., Norman, A.G., and Mascarenhas, A., Appl. Phys. Lett. 80, 3292 (2002).Google Scholar
8. Wallart, X., Priester, C., Deresmes, D., and Mollot, F., Appl. Phys. Lett. 77, 253 (2000).Google Scholar
9. Hsieh, K.C., Baillargeon, J.N., and Cheng, K.Y., Appl. Phys. Lett. 57, 2244 (1990).Google Scholar
10. Cheng, K.Y., Hsieh, K.C., and Baillargeon, J.N., Appl. Phys. Lett. 60, 2892 (1992).Google Scholar
11. Dorin, C. and Mirecki Millunchick, J., J. Appl. Phys. 91, 237 (2002).Google Scholar
12. Stokes, D.W., Forrest, R.L., Li, J.H., Moss, S.C., Nosho, B.Z., Bennett, B.R., Whitman, L.J., and Goldenberg, M., J. Appl. Phys. 93, 311 (2003).Google Scholar
13. Ahrenkiel, S.P., Xin, S.H., Reimer, P.M., Berry, J.J., Luo, H., Short, S., Bode, M., Al-Jassim, M., Buschert, J.R., and Furdyna, J.K., Phys. Rev. Lett. 75, 1586 (1995).Google Scholar
14. Venezuela, P., Tersoff, J., Floro, J.A., Chason, E., Follstaedt, D.M., Liu, F., Lagally, M.G., Nature 397, 678 (1999).Google Scholar
15. Ferguson, I.T., Norman, A.G., Joyce, B.A., Seong, T.-Y., Booker, G.R., Thomas, R.H., Phillips, C.C., and Stradling, R.A., Appl. Phys. Lett. 59, 3324 (1991).Google Scholar
16. Stringfellow, G.B., J. Cryst. Growth 58, 194 (1982).Google Scholar
17. Follstaedt, D.M., Schneider, R.P. Jr, and Jones, E.D., J. Appl. Phys. 77, 3077 (1995).Google Scholar
18. Chen, Y.-C., Bucklen, V., Rajan, K., Wang, C.A., Charache, G.W., Nichols, G., Freeman, M., and Sander, P., Mat. Res. Soc. Symp. Proc. Vol. 583, 367 (2000).Google Scholar
19. El-Masry, N.A., Behbehani, M.K., LeBoeuf, S.F., Aumer, M.E., Roberts, J.C., and Bedair, S.M., Appl. Phys. Lett. 79, 1616 (2001).Google Scholar
20. Jaw, D.H., Chang, J.R., and Su, Y.K., Appl. Phys. Lett. 82, 3883 (2003).Google Scholar
21. Wang, C.A., Choi, H.K., Oakley, D.C., Charache, G.W., J. Cryst. Growth 195, 346355 (1998).Google Scholar
22. Wang, C.A., Calawa, D.R., and Vineis, C.J., J. Electron. Mater. 30, 13921396 (2001).Google Scholar
23. Wang, C.A., Appl. Phys. Lett. 76, 2077 (2000).Google Scholar
24. Wang, C.A., Choi, H.K., Ransom, S.L., Charache, G.W., Danielson, L.R., and DePoy, D.M., Appl. Phys. Lett. 75, 1305 (1999).Google Scholar
25. Dutta, P.S. and Miller, T.R., J. Electron. Mater. 29, 956 (2000).Google Scholar
26. Tersoff, J., Phys. Rev. B56, R4394 (1997).Google Scholar
27. Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
28. Glas, F., Appl. Surf. Sci. 123/124, 298 (1998).Google Scholar
29. Glas, F., Phys. Rev. B 62, 7393 (200).Google Scholar
30. Vineis, C.J., Ph.D. Thesis, Massachusetts Institute of Technology, 2001.Google Scholar
31. Zhang, Y.W., Xu, S.J., Chiu, C.-H., Appl. Phys. Lett. 74, 1809 (1999).Google Scholar
32. Su, L.C. and Stringfellow, G.B., J. Appl. Phys. 83, 3620 (1998)Google Scholar