Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:22:16.206Z Has data issue: false hasContentIssue false

Self-Organization of Gold Nanoparticles on Surface-Modified Conducting Polymer Films

Published online by Cambridge University Press:  10 February 2011

Donghui Zhang
Affiliation:
Department of Chemistry Furman University Greenville, SC 29613
Sarah Klapman
Affiliation:
Department of Chemistry Furman University Greenville, SC 29613
Timothy W. Hanks
Affiliation:
Department of Chemistry Furman University Greenville, SC 29613
Get access

Abstract

Thiol-coated gold nanoparticles with a diameter of approximately 7.5 nanometers and a narrow particle distribution were prepared from sodium tetrachloroaurate under phase transfer conditions. The thiols used were 1-mercaptododecane (1) and 1-mercapto-9,11-heptadecadiyne (4). The particles were cast onto thin films of polyaniline and poly (3,4-ethylenedioxythiophene), as well as onto thiol-coated versions of the same polymer. Surface modification of the polymers with long chain thiols encourages the spontaneous self-assembly of the particles into twodimensional arrays and may offer a unique method for stabilization of nanoparticle assemblies on polymer substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1For example, see: a) Marinakos, S. M.; Brousseau, C.; Jones, A.; Feldheim, D. L. Chem. Mater. 1998, 10, 1214. b) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335. c) Kiely, C. J.; Fink, J.; Brust. M.; Bethell, D.; Schiffrin, D. J. Nature, 1998, 396, 444.Google Scholar
2a) Grabar, K.C.; Allison, K.J.; Baker, B.E.; Bright, R.M.; Brown, K.R.; Freeman, R.G.; Fox, A.P.; Keating, C.D.; Musick, M.D.; Natan, M.J. Langmuir. 1996, 12, 2353. b) Snow, A.W.; Ancona, M.G.; Kruppa, W.; Jernigan, G.G.; Foos, E.E.; Park, D. J. Mater. Chem. 2002, 12, 1222. c) Tian, F.; Klabunde, K.J. New J. Chem. 1998, 1275.Google Scholar
3 Baughman, R.H.; Yee, K.C. J. Poly. Sci.: Macromol. Rev. 1978, 13, 219.Google Scholar
4See especially: a) Kim, T.; Ye, Q.; Sun, L.; Chan, K. C.; Crooks, R. M. Langmuir, 1996, 12, 6065. b) Zhou, H. S.; Wada, T.; Sasabe, H.; H.; Komiyama, H. Syn. Metals 1996, 81, 129. c) Day, D.; Ringsdorf, H. J. Poly. Sci.; Poly. Lett. Ed. 1978, 16, 205. d) Reichert, A.; Nagy J.O.; Spevak, W.; Charych, D. J. Am. Chem. Soc. 1995, 117, 829.Google Scholar
5 Zhou, H. S.; Wada, T.; Sasabe, H. J. Chem. Soc. Chem. Commun. 1995, 1525.Google Scholar
6 Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.Google Scholar
7a) Hanks, T.W.; Bergman, B.; Dillion, P. Synthetic Metals, 2001, 121, 1431. b) Bergman, B.; Hanks T. W. Macromolecules 2000, 33, 8035. c) Zhang, D.; Hanks, T.W. Poly. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 2002, 43, 376.Google Scholar