Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T20:05:06.906Z Has data issue: false hasContentIssue false

Self-Limiting Growth Kinetics of 3D Coherent Islands

Published online by Cambridge University Press:  21 February 2011

K. M. Chen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
D. E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6031;
T. Thundat
Affiliation:
Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. J. Warmack
Affiliation:
Health Sciences Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Large 3D coherent islands are found to kinetically resist their further growth during post-deposition annealing of metastable 2D strained films. We reveal that a kinetic energy barrier exists to successive facet-layer growth of a 3D strained island at the expense of its surrounding 2D structure. The barrier increases with further growth of the island, which defines a self-limiting behavior of island growth. This self-limiting effect naturally explains a number of relevant features which have been observed experimentally including narrow island size distributions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Grundmann, M. et al. , Phys. Rev. Lett. 74, 4043 (1995), and references therein.Google Scholar
2 Eaglesham, D. J., and Cerullo, M., Phys. Rev. Lett., 64, 1943 (1990).Google Scholar
3 Leonard, D., Krishnamurthy, M., Reaves, C. M., Denbaars, S. P., and Petroff, P. M., Appl. Phys. Lett. 63, 3203 (1993); D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B50, 11687 (1994); D. Leonard, M. Krishnamurthy, S. Fafard, J. L. Marz, and P. M. Petroff, J. Vac. Sci. Technol. B12, 1063 (1994).Google Scholar
4 Solomon, G. S., Trezza, J. A., and Harris, J. S. Jr., Appl. Phys. Lett. 66, 991 (1995); 66, 3161 (1995).Google Scholar
5 Moison, J. M., Houzay, F., Barthe, F., Leprince, L., Andre, E. and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
6 Priester, C. and Lannoo, M., Phys. Rev. Lett. 75, 93 (1995).Google Scholar
7 Shchukin, V. A., Ledentsov, N., Kop'ev, P. S., and Bimberg, D.. Phys. Rev. Lett. 75, 2968 (1995).Google Scholar
8 Tersoff, J., and Tromp, R. M., Phys. Rev. Lett. 70, 2782 (1993); J. Tersoff, and F. K. LeGoues, 72, 3570 (1994); J. Tersoff, 74, 4962(1995).Google Scholar
9 Chen, K. M., Jesson, D. E., Pennycook, S. J., Thundat, T., Warmack, R. J., to be published.Google Scholar
10 Chakraverty, B. K., J. Phys. Chem. Solids 28, 2401 (1967); and references therein.Google Scholar
11 Jesson, D. E., Chen, K. M., Pennycook, S. J., Thundat, T., Warmack, R. J., Science 268, 1161 (1995).Google Scholar
12 Duport, C., Nozieres, P., and Villain, J., Phys. Rev. Lett. 74, 134 (1995).Google Scholar
13 Rickman, J. M., and Srolovitz, D. J., Surf. Sci. 284, 211 (1993).Google Scholar
14 Krishnamurthy, M., Drucker, J. S., and Venables, J. A., J. Appl. Phys. 69, 6461 (1991).Google Scholar
15 Bennett, B. R., et al. in the Proceeding of 15th Annual North American Conference on Molecular Beam Epitaxy, Sept. 17-20, 1995, in press.Google Scholar
16 LeGoues, F. K., Reuter, M. C., Tersoff, J., Hammer, M., and Tromp, R. M., Phys. Rev. Lett. 73, 300 (1994). The shape change of a 3D island could also contribute to the rapid lateral growth of the island following the dislocation introduction, as suggested by the authors. However, the slow growth preceding the dislocation nucleation is an indication of the self-limiting behavior discussed in this paper.Google Scholar