Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T04:34:07.417Z Has data issue: false hasContentIssue false

Self-Heating Effects in Multi-Finger AlGaN/GaN HFETs

Published online by Cambridge University Press:  11 February 2011

M. Kuball
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol BS8 1TL, United Kingdom
S. Rajasingam
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol BS8 1TL, United Kingdom
A. Sarua
Affiliation:
University of Bristol, H.H. Wills Physics Laboratory, Bristol BS8 1TL, United Kingdom
M. J. Uren
Affiliation:
QinetiQ Ltd., St. Andrew's Road, Malvern, Worcs WR14 3PS, United Kingdom
T. Martin
Affiliation:
QinetiQ Ltd., St. Andrew's Road, Malvern, Worcs WR14 3PS, United Kingdom
R. S. Balmer
Affiliation:
QinetiQ Ltd., St. Andrew's Road, Malvern, Worcs WR14 3PS, United Kingdom
K. P. Hilton
Affiliation:
QinetiQ Ltd., St. Andrew's Road, Malvern, Worcs WR14 3PS, United Kingdom
Get access

Abstract

We report on the in-situ measurement of temperature, i.e., self-heating effects, in multi-finger AlGaN/GaN HFETs grown on SiC substrates. Optical micro-spectroscopy was used to measure temperature with 1m spatial resolution. Thermal resistance (temperature rise per W/mm) was measured as a function of device pitch and gate finger width. There is significant thermal cross talk in multi-finger AlGaN/GaN HFETs and this needs to be seriously considered for device performance and ultimately device reliability. A comparison with theoretical modeling is presented. Uncertainties in modeling parameters currently make modeling less reliable than experimental temperature assessment of devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuball, M., Hayes, J.M., Uren, M. J., Martin, T., Birbeck, J.C.H., Balmer, R.S., and Hughes, B.T., IEEE Electron Dev. Lett. 23, 7 (2001).Google Scholar
2. Kuball, M., Surf. Interface Anal. 31, 987 (2001).Google Scholar
3. Liu, M.S., Bursill, L.A., Prawer, S., Nugent, K.W., Tong, Y.Z., and Zhang, G.Y., Appl. Phys. Lett. 743, 3125 (1999).Google Scholar
4. Florescu, D.I., Asnin, V.M., Pollak, F.H., Jones, A.M., Ramer, J.C., Schurman, M.J., and Ferguson, I., Appl. Phys. Lett. 77, 1464 (2000).Google Scholar
5. Allen, S.T., Sheppard, S.T., Pribble, W.L., Sadler, R.A., Alcorn, T.S., Ring, Z., and Palmour, J.W., Mat. Res. Soc. Symp. Proc. 572, 15 (1999).Google Scholar
6. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, Oxford Clarendon Press, Oxford, 2nd ed., 1959.Google Scholar
7. Florescu, D. I., Asnin, V. M., and Pollak, F. H., Compound Semiconductor 7, no. 2, 62 (2001).Google Scholar
8. Carter, C.H. Jr, Tsvetkov, V.F., Glass, R.C., Henshall, D., Brady, M., Müller, St.G., Kordina, O., Irvine, K., Edmond, J.A., Kong, H.-S., Singh, R., Allen, S.T., and Palmour, J.W., Mat. Sci. Engin. B 61–62, 1 (1999).Google Scholar
9. Landolt-Börnstein, , Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. 17a (Springer, Berlin, 1982).Google Scholar
10. Ashcroft, N.W. and Mermin, N.D, “Solid State Physics” (Saunders, New York, 1976).Google Scholar
11. Daly, B. C., Maris, H. J., Nurmikko, A. V., Kuball, M., and Han, J., J. Appl. Phys. 92, 3820 (2002).Google Scholar