Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:55:54.183Z Has data issue: false hasContentIssue false

Self-Assembling Microspheres from Charged Functional Polyelectrolytes and Small-Molecule Counterions

Published online by Cambridge University Press:  17 March 2011

Brandon Mckenna
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA-93106-9510, USA
Henrik Birkedal
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA-93106-9510, USA
Michael H. Bartl
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA-93106-9510, USA California NanoSystems Institute, University of California, Santa Barbara, CA-93106-9510, USA
Timothy J. Deming
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA-93106-9510, USA Materials Department, University of California, Santa Barbara, CA-93106-9510, USA
Galen D. Stucky
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA-93106-9510, USA Materials Department, University of California, Santa Barbara, CA-93106-9510, USA
Get access

Abstract

Micrometer-sized spheres have been found to assemble from homopolymer electrolytes and small, multivalent counterions in water. In contrast to previous efforts, these vesicles do not use preformed templates, do not require block copolymers, and do not necessarily employ nanoparticles. We have investigated the requirements for vesicle formation with regards to both components of the assembly. Self-assembly occurs with a variety of poly-amino acids and counterions, all of which require a minimum number of charged groups to promote non-covalent crosslinking. We show how the assembly process is controlled by pH and how, in consequence, the pKa's of the reactants can be used to reliably predict sphere formation. By varying the nature of the small counterions, we have determined the requirements for assemblies. The assemblies have been further investigated using confocal microscopy and fluorescent labeling of the different components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shimizu, K., Cha, J., Stucky, G. D., Morse, D. E., Proc. Natl. Acad. Sci. USA 95, 62346238 (1998).Google Scholar
2. Zhou, Y., Shimizu, K., Cha, J., Stucky, G. D., Morse, D. E., Angew. Chem. Int. Ed. 38, 780782 (1999).3.0.CO;2-#>CrossRefGoogle Scholar
3. Poulsen, N., Sumper, M., Kröger, N., Proc. Natl. Acad. Sci. USA 100), 1207512080 (2003).CrossRefGoogle Scholar
4. Sumper, M., Lorenz, S., Brunner, E., Angew. Chem. Int. Ed 42, 51925195 (2003).CrossRefGoogle Scholar
5. Cha, J. N., Stucky, G. D., Morse, D. E., Deming, T. J., Nature 403, 289292 (2000).CrossRefGoogle Scholar
6. Sschukin, D., Sukhorukov, G., Mohwald, H., Angew. Chem. Int. Ed. 42, 44724475 (2003).CrossRefGoogle Scholar
7. Cha, J. N., Birkedal, H., Euliss, L. E., Bartl, M. H., Wong, M. S., Deming, T. J., Stucky, G. D., J. Am. Chem. Soc. 125, 82858289 (2003).CrossRefGoogle Scholar
8. Wong, M. S., Cha, J. N., Choi, K-S., Deming, T. J., Stucky, G. D., Nano Letters, 2, 583587 (2002).CrossRefGoogle Scholar
9. Cha, J. N., Bartl, M. H., Popitsch, A., Wong, M. S., Deming, T. J., Stucky, G. D., Nano Letters, 3, 907911 (2003).CrossRefGoogle Scholar
10. Putnam, D., Gentry, C. A., Pack, D. W., and Langer, R., Proc. Natl. Acad. Sci. USA 98, 12001205 (2001).CrossRefGoogle Scholar
11. Murthy, V. S., Cha, J. N., Stucky, G. D., Wong, M. S., J. Am Chem. Soc. (2004) (Accepted).Google Scholar