Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T10:55:59.833Z Has data issue: false hasContentIssue false

Self-assembled Si/Ge quantum dot structures for novel device applications

Published online by Cambridge University Press:  11 February 2011

K. Brunner
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
D. Bougeard
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
A. Janotta
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
M. Herbst
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
P. H. Tan
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
H. Riedl
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
G. Abstreiter
Affiliation:
Walter Schottky Institute, TU Munich, Am Coulombwall, D-85748 Garching, Germany
Get access

Abstract

The band structure of self-assembled Si/Ge quantum dot structures deposited by molecular beam epitaxy in the Stranski Krastanov growth mode is characterized by optical and electrical spectroscopy. Interband and intraband absorption, photocurrent, photoluminescence, Raman and admittance spectroscopy of structures with quantum dots of about 20 nm lateral size offer insight into the discrete level scheme within the valence band, the optical transitions and the lifetime of localized hole states. The results are discussed with respect to their possible applications in infrared light detection, storage and quantum-logic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brunner, Karl, “Si/Ge Nanostructures”, in Rep. Prog. Phys. 65 (1), 2772 (2002).Google Scholar
2 Mo, Y. W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
3 Zrenner, A., J. of Chemical Physics 112, 77907798 (2000).Google Scholar
4 Seok, J. H. and Kim, J. Y., Appl. Phys. Lett. 78, 3124 (2001).Google Scholar
5 Kuan, T. S. and Iyer, S. S., Appl. Phys. Lett. 59, 2242 (1991).Google Scholar
6 Herbst, M., Schramm, C., Brunner, K., Asperger, T., Riedl, H., Abstreiter, G., Vörckel, A., Kurz, H., and Müller, E., Mat. Sci. & Engineer. B 89, 5457 (2002).Google Scholar
7 Kienzle, O., Ernst, F., Rühle, M., Schmidt, O. G., and Eberl, K., Appl. Phys. Lett. 74, 269 (1999).Google Scholar
8 Brunner, K., Herbst, M., Bougeard, D., Miesner, C., Asperger, T., Schramm, C., and Abstreiter, G., Physica E 13, 10181021 (2002).Google Scholar
9 Asperger, T., Miesner, C., Brunner, K., and Abstreiter, G., Phys. Stat. Sol. (b) 224, No. 1, 237240 (2001).Google Scholar
10 Milekhin, A. G., Nikiforov, A. I., Pchelyakov, O. P., Schulze, S., and Zahn, D. R. T., Nanotechnology 13, 55 (2002).Google Scholar
11 Nazvaova, E., Suemoto, T., Maruyama, S., and Takano, Y., Phys. Rev. B 62, 1873 (2000).Google Scholar
12 Miesner, C., Röthig, O., Brunner, K., and Abstreiter, G., Appl. Phys. Lett. 76, 1027 (2000).Google Scholar
13 Miesner, C., Brunner, K., and Abstreiter, G., Infrared Physics & Technology 42, 461465 (2001).Google Scholar
14 Bougeard, D., Brunner, K., and Abstreiter, G., Proc. of E-MRS 2002, Physica E (to be published).Google Scholar
15 Elkurdi, M., Boucaud, P., Sauvage, S., Kermarrec, O., Campidelli, Y., Bensahel, D., Saint-Girons, G., and Sagnes, I., Appl. Phys. Lett. 80, 509 (2002).Google Scholar
16 Colace, L., Masini, G., Assanto, G., Luan, H. C., Wada, K., and Kimerling, L. C., Appl. Phys. Lett. 76, 1231 (2000).Google Scholar
17 Lafontaine, H., rowell, N. L., janz, S., and Xu, D. X., J. Appl. Phys. 86, 1287 (1999).Google Scholar
18 Ryzhii, V., Semicond. Sci. Technol. 11, 759 (1996).Google Scholar
19 Fromherz, T., Mac, W., Miesner, C., Brunner, K., Bauer, G., and Abstreiter, G., Appl. Phys. Lett. 80, 2093 (2002).Google Scholar
20 Fukatsu, S., Akiyama, H., Shiraki, Y., and Sakaki, H., Appl. Phys. Lett. 67, 3602 (1995).Google Scholar
21 Kapteyn, C. M. A., Lion, M., Heitz, R., Bimberg, D., Miesner, C., Asperger, T., Brunner, K., and Abstreiter, G., Appl. Phys. Lett. 77, 4169 (2000).Google Scholar
22 Feher, G. and Gere, E. A., Phys. Rev. 114, 1245 (1059).Google Scholar
23 Gordon, J. P. and Bowers, K. D., Phys. Rev. Lett. 1, 368 (1958).Google Scholar
24 Vrijen, R. et al., Phys. Rev. A 62, 012306 (2000).Google Scholar