Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:27:33.066Z Has data issue: false hasContentIssue false

Self Assembled Patterns of Gold Nanoclusters in Silicon (100) Produced by Metal Vapour Vacuum Arc Ion Implantation

Published online by Cambridge University Press:  01 February 2011

Dinesh Kumar Venkatachalam
Affiliation:
[email protected], RMIT University, School of Applied Sciences, 124, La Trobe Street, Melbourne, 3001, Australia, +61 3 9925 2127
Dinesh Kumar Sood
Affiliation:
[email protected], RMIT University, School of Electrical and Computer Engineering, 124, La Trobe Street, Melbourne, 3001, Australia
Suresh Kumar Bhargava
Affiliation:
[email protected], RMIT University, School of Applied Sciences, 124, La Trobe Street, Melbourne, 3001, Australia
Get access

Abstract

Self assembled gold nanoclusters are attractive building blocks for future nanoscale sensors and optical devices due to their exciting catalytic properties. Recently several methods have been employed to produce nanoclusters on solid substrates, which result in a random spatial distribution of the clusters. In this work, we have achieved ordered circular patterns of gold nanoclusters in Silicon (100) substrates by Au ion implantation followed by thermal annealing. This unique phenomenon is observed only above a critical threshold implantation dose and anneal temperature. Based on a systematic study (SEM, XTEM and XRD) of the growth and morphology of the nanoclusters, we propose a tentative model for the formation mechanism of this unusual self-assembled pattern.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whitesides, George M. and Grzybowski, Bartosz, Science 295, 2418 (2002).Google Scholar
2. Stowell, Cynthia and Korgel, Brian A., Nanoletters 1 (11), 595 (2001).Google Scholar
3. Reuter, Torsten et al, Nanoletters 2 (7), 709 (2002).Google Scholar
4. Cheng, Joy Y. et al, Nanoletters 6 (9), 2099 (2006).Google Scholar
5. Magagnin, L. et al, Microelectronic Engineering 64, 479 (2002).Google Scholar
6. Yan, Feng and Goedel, Werner A., Nanoletters 4 (7), 1193 (2004).Google Scholar
7. Hamann, Hendrik F. et al, Nanoletters 3 (12), 1643 (2003).Google Scholar
8. Piner, Richard D. et al, Science 283 (5402), 661 (1999).Google Scholar
9. Xu, Lin et al, Nanoletters 5 (12), 2563 (2005).Google Scholar
10. Yatsui, Takashi et al, Nanoletters 5 (12), 2548 (2005).Google Scholar
11. Lian, Jie et al, Nanoletters 6 (5), 1047 (2006).Google Scholar
12. Meldrum, A. et al, Adv. Mater. 13, 1431 (2001).Google Scholar
13. Sood, D. K. et al, Appl. Phys. Letters 88, 143110 (2006).Google Scholar
14. Stelzner, Th et al, Nanotechnology 17, 2895 (2006).Google Scholar
15. Nakanoa, Shizuka et al, Surface & Coatings Technology 187, 167 (2004).Google Scholar
16. Wong-Leung, J. et al, Nucl. Instrum. & Meth. in Physics Research B 96, 253 (1995).Google Scholar
17. Ripszam, M. et al, Chem. Phys. Lett. 414, 384 (2005).Google Scholar
18. Henisch, Heinz. K., Crystals in Gels and Liesegang Rings, 1st ed. (Cambridge University Press, New York, 1988).Google Scholar
19. Gerrard, J. E. et al, Acta Metallurgica 10 (9), 751 (1962).Google Scholar