Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T18:52:44.576Z Has data issue: false hasContentIssue false

(Selective) Epitaxial Growth of Strained Si to Fabricate Low Cost and High Performance CMOS Devices

Published online by Cambridge University Press:  17 March 2011

R. Loo
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
R. Delhougne
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven also K.U. Leuven, ESAT-INSYS, Kasteelpark Arenberg 10, B – 3001 Leuven
P. Meunier-Beillard
Affiliation:
Philips-Research Leuven, affiliated to IMEC-LD group, Kapeldreef 75, B – 3001 Leuven
M. Caymax
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
P. Verheyen
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
G. Eneman
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven also K.U. Leuven, ESAT-INSYS, Kasteelpark Arenberg 10, B – 3001 Leuven
I. De Wolf
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
T. Janssens
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
A. Benedetti
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
K. De Meyer
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven also K.U. Leuven, ESAT-INSYS, Kasteelpark Arenberg 10, B – 3001 Leuven
W. Vandervorst
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven also K.U. Leuven, ESAT-INSYS, Kasteelpark Arenberg 10, B – 3001 Leuven
M. Heyns
Affiliation:
IMEC, Kapeldreef 75, B – 3001 Leuven
Get access

Abstract

Tensile strained Si on SiGe Strain Relaxed Buffers (SRB) is an interesting candidate to increase both electron and hole mobility which results in improved device performance. Most of this work was/is based on thick (several μm), step-graded SRBs with or without Chemical Mechanical Polishing (CMP) planarisation. This approach bears several disadvantages such as issues with STI formation in the thick SiGe structure, and considerable self-heating effects due to the lower thermal conductivity of the SiGe material. Further, pMOS improvement requires SRBs with high Ge contents (> 30 %), which complicates device fabrication even more. To overcome these issues, we developed a new and cost efficient type of thin SRB (∼200 nm). The concept is based on the introduction of a thin carbon-containing layer during growth of a constant composition SiGe layer. The process relies on standard Chemical Vapor Deposition epitaxial technology without need for CMP. It is designed to allow both non-selective growth on blanket wafers and selective growth in the active area of structured wafers with Shallow Trench Isolation (STI). The selective epitaxial process for strained Si on thin SRBs proposed here, allows relatively simple and cost-effective fabrication of strained Si layers on existing STI structures without any process modification. Further, it offers a very flexible fabrication scheme to independently improve nMOS and pMOS devices. The SRB quality is comparable to the best reported in literature so far, with 70 % and 53 % mobility enhancements for long channel nMOSFETs on 22 % Ge SRBs grown on blanket and STI patterned wafers, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, IEDM 2002 (session 2 and 3), IEDM 2003 (session 3), and 2002/2003 Symposia on VLSI Technology.Google Scholar
2. Rim, K. et al. 2002 Symposium on VLSI Technology, p. 98 (2002)Google Scholar
3. Mizuno, T. et al. IEDM Techn. Dig. p. 31 (2002)Google Scholar
4. Takagi, S. et al. IEDM Techn. Dig. p. 57 (2003)Google Scholar
5. Wang, H.C.-H et al. IEDM Techn. Dig. p. 61 (2003)Google Scholar
6. Curie, M.T., Leitz, C.W., Langdo, T.A., Taraschi, G., Fitzgerald, E.A., Antoniadas, D.A., J. Vac. Sci. Technol. B 19, 2268 (2001)Google Scholar
7. Sanuki, T. et al. IEDM Techn. Dig. p.65 (2003)Google Scholar
8. Ghani, T. et al. , IEDM Techn. Dig, p. 978 (2003)Google Scholar
9. Loo, R. et al. . Proc. of the ISTDM 2003, Applied Surface Science 224, 292 (2004)Google Scholar
10. Alieu, J., Skotnicki, T., Josse, E., Regolini, J.-L., and Bremond, G., 2000 Symposium on VLSI Technology, p. 130 (2000)Google Scholar
11. Lee, M. L., and Fitzgerald, E. A., IEDM Techn. Dig., p. 429 (2003)Google Scholar
12. Hackbart, T., Zeuner, M., and König, U., Compound Semiconductors 8, 45 (2002)Google Scholar
13. Wolf, I. De, Journal of Raman Spectroscopy 30, p. 877 (1999)Google Scholar
14. Wolf, I. De, Senez, V., Balboni, R., Armigliato, A., Frabboni, S., Cedola, A., Lagomarsino, S., Microelectronic Engineering 70, p. 425 (2003)Google Scholar
15. Lyutovich, K., Kasper, E., Ernst, F., Bauer, M., Oehme, M., Materials Science and Engineering B 71, 14 (2000)Google Scholar
16. Linder, K. K., Zhang, F. C., Rieh, J.-S., Bhattacharaya, P., Houghton, D., Appl. Phys. Lett. 70, 3224 (1997)Google Scholar
17. Trinkaus, H. et al. , Appl. Phys. Lett. 76, 3553 (2000)Google Scholar
18. Mantl, S. et al. Nucl. Instr. Meth. B 147, 29 (1999)Google Scholar
19. Kanzawa, Y., Nozawa, K., Saitoh, T., Kubo, M., European Patent EP 1 197 992 A1Google Scholar
20. Curie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W., and Fitzgerald, E.A., Appl. Phys. Lett. 72, 1718 (1998)Google Scholar
21. Schäffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., and Holländer, B., Semicond. Sci. Techn. 7, 260 (1992)Google Scholar
22. Tezuka, T., Sugiyama, N., Mizuno, T., Suzuki, M., and Takagi, S., Jpn. J. Appl. Phys 40, 2866 (2001)Google Scholar
23. LeGoues, F.K., Powell, A., and Iyer, S.S., J. Appl. Phys, 75, 7240 (1994)Google Scholar
24. Olsen, S. H. et al. J. of Appl. Phys. 94, 6855 (2003)Google Scholar
25. Delhougne, R., Meunier-Beillard, P., Caymax, M., Loo, R., and Vandervorst, W., Proc. of the ISTDM 2003, Applied Surface Science 224, 91 (2004)Google Scholar
26. Delhougne, R. et al. , accepted for Solid State ElectronicsGoogle Scholar
27. Brabant, P., Wen, J., Italiano, J., Landin, T., Cody, N. and Haen, L., Proc. of the ISTDM 2003, Applied Surface Science 224, 347 (2004)Google Scholar
28. Eneman, G. et al. , accepted for ISTDM 2004 Google Scholar
29. Loo, R., Meunier-Beillard, P., Delhougne, R., Koumoto, T., Geenen, L., and Brijs, B., ECS Proceedings Volume 2003–03, p.329 (2003).Google Scholar
30. Loo, R. et al. Journal of Electrochemical Society. 150, 638 (2003)Google Scholar
31. Loo, R., Caymax, M., Richard, O., Verheyen, P., and Collaert, N., Solid State Phenomena 92, 199 (2003)Google Scholar
32. Meyer, F., Zafrany, M., Eizenberg, M., Beserman, R., Schwebel, C., and Pellet, C., J. Appl. Phys. 70, p. 4268 (1991)Google Scholar
33. Vandervorst, W., Pawlak, B., Lindsay, R., Delhougne, R., Caymax, M., Brijs, B., to be presented at MRS 2004 Spring Meeting.Google Scholar
34. Pawlak, B. J. et al. to be presented at MRS 2004 Spring Meeting.Google Scholar