Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-03T19:35:46.034Z Has data issue: false hasContentIssue false

Selective Depositions of Fe-Containing Oxide Films on Mixed Selfassembled Organic Monolayers using Microcontact Printing

Published online by Cambridge University Press:  10 February 2011

Hyunjung Shin
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Hyejin Im
Affiliation:
Department of Materials Engineering, Kyonggi University, Suwon, Korea
Seungbum Hong
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Taejon, Korea
Kyongmi Lee
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Geunbae Lim
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Jong Up Jeon
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Eung Soo Kim
Affiliation:
Department of Materials Engineering, Kyonggi University, Suwon, Korea
Y. Eugene Pak
Affiliation:
Micro Systems Lab., Samsung Advanced Institute of Technology and CRI, P.O. Box 111, Suwon, Korea 440–600
Get access

Abstract

In situ patterning of crystalline iron oxide thin layers has been achieved via microcontact printing (μCP) and selective deposition. μCP was used to pattern two different surface moieties of selfassembled organic monolayers (SAMs) on Au/Cr/Si substrates. An elastomeric stamp (poly(dimethylsiloxane); PDMS) having a submicron-size patterned relief structure was used to transfer either hexadecanethiol (HDT) SAMs, which are to sustain deposition of iron oxide precipitates, or hydrophilic SAMs (e.g. dithiothreitol (DTT)). Selective deposition is realized through precipitation of iron oxide phases from aqueous solutions at ambient temperature (<100°C). Aqueous solutions of 0.05 M of iron nitrate (Fe(NO3)2•9H20) containing urea under nitric acid (pH < 2) were prepared for selective depositions. X-ray photoelectron spectroscopic (XPS) results showed that iron oxide precipitates were deposited onto hydrophilic SAMs, but not onto HDT surfaces. As-deposited films onto DTT-SAM surfaces at 80°C were crystalline α-Fe2O3 (hematite). Fe3O4 and γ-Fe2O3 films were synthesized via annealing of as-deposited α-Fe2O3. Scanning electron microscopy, x-ray diffractometry, vibrating sample magnetometry, and optical microscopy were used to characterize the films' microstructures and properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Koster, E., in Magnetic recording technology, Mee, C. Denise and Daniel, Eric D., eds. New York, McGraw-Hill, 1995, 3.37–3.49Google Scholar
2. Dhara, S., Rastogi, A. C., and Das, B. K., J. Appl. Phys., 74 (11) 7019–21 (1993)10.1063/1.355062Google Scholar
3. Isuii, O. and Senda, M., J. Appl. Phys., 77, 5828 (1995)10.1063/1.359162Google Scholar
4. Gao, Y., Kim, Y. J., and Chamber, S. A., J. Mater. Res., 13, 2003–14 (1998)10.1557/JMR.1998.0281Google Scholar
5. Lin, J. K., Sivertsen, J. M., and Judy, J. H., J. Appl. Phys., 57, 4000–02 (1985)10.1063/1.334889Google Scholar
6. Shin, H., Collins, R. J., Guire, M. R. De, Heuer, A. H., and Sukenik, C. N., J. Mater. Res., 10, 692 (1995)10.1557/JMR.1995.0692Google Scholar
7. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. F., Graff, G. L., Song, L., Liu, J., Virden, J. W., and McVey, G. L., Science, 264, 4855 (1994)10.1126/science.264.5155.48Google Scholar
8. Agarwal, M., Guire, M. R. De, and Heuer, A. H., J. Am. Ceram. Soc., 80, 2967–81 (1997)10.1111/j.1151-2916.1997.tb03222.xGoogle Scholar
9. Rieke, P. C., Marsh, B. D., Wood, L. L., Tarasevich, B. J., Liu, J., Song, L., and Fryxell, G. E., Langmuir, 11, 318326 (1995)10.1021/la00001a054Google Scholar
10. Tarasevich, B. J. rieke, P. C., and Liu, J., Chem. Mater., 8, 292300 (1996)10.1021/cm940391eGoogle Scholar
11. Xia, Y. and Whitesides, G. M., Angew. Chem. Int. Ed., 37, 550–75 (1998)10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G3.0.CO;2-G>Google Scholar
12. Kumar, A., Biebuyck, H. A., and Whitesides, G. M., Langmuir, 10, 14981511 (1994)10.1021/la00017a030Google Scholar
13. Xia, Y., Zhao, X.-M., and Whitesides, G. M., Microelectronic Engineering, 32, 255–68 (1996)10.1016/0167-9317(95)00174-3Google Scholar
14. Wilbur, J. L., Kumar, A., Kim, E., and Whitesides, G. M., Adv. Mater., 6, 600 (1994)10.1002/adma.19940060719Google Scholar
15. Kumar, A., Abbot, N. L., Kim, E., Biebuyck, H. A., and Whitesides, G. M., Acc. Chem. Res., 28, 219226 (1995)10.1021/ar00053a003Google Scholar
16. Xia, Y., Kim, E., and Whitesides, G. M., J. Electrochem. Soc., 143, 1070–79 (1996)10.1149/1.1836585Google Scholar
17. Xia, Y. and Whitesides, G. M., Langmuir, 13, 2059–67 (1997)10.1021/la960936eGoogle Scholar
18. Agarwal, M., Guire, M. R. De, and Heuer, A. H., Appl. Phys. Lett., 71, 891 (1997)10.1063/1.119679Google Scholar
19. Collins, R. J., Shin, H., Guire, M. R. De, Heuer, A. H., and Sukenik, C. N., Appl. Phys. Lett., 69, 860 (1996)10.1063/1.117916Google Scholar
20. Gao, Y., Kim, Y. J., Chambers, S. A., and Bai, G., J. Vac. Sci. Technol. A 15, 332 (1997)10.1116/1.580488Google Scholar
21. Graat, P. C. J., and Somers, M. A. J., Appl. Surf. Sci., 100/101, 3640 (1996)10.1016/0169-4332(96)00252-8Google Scholar
22. Shin, H., Wang, Y., Sampathkumaran, U., Guire, M. R. De, Heuer, A. H., and Sukenik, C. N., J. Mater. Res., accepted for the publication (1999)Google Scholar
23. Shin, H., Agarwal, M., Guire, M. R. De, and Heuer, A. H., Acta Mater, 46, 801–15 (1998)10.1016/S1359-6454(97)00258-9Google Scholar