Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T22:28:34.556Z Has data issue: false hasContentIssue false

Selective Area Growth of GaN Nano Islands by Metal Organic Chemical Vapor Deposition: Experiments and Computer Simulations

Published online by Cambridge University Press:  01 February 2011

Anilkumar Chandolu
Affiliation:
[email protected], Texas Tech University, Electrical Engineering, Department of Electrical Engineering, Mail Stop 3102, Lubbock, TX, 79409-3102, United States, 806-441-1468, 806-742-8061
Gela D Kipshidze
Affiliation:
[email protected], Texas Tech University, Department Of Electrical and computer Engineering, 1012 Boston Avenue, Mail Stop 3102, Lubbock, TX, 79409-3102, United States
Sergey A Nikishin
Affiliation:
[email protected], Texas Tech University, Department Of Electrical and computer Engineering, 1012 Boston Avenue, Mail Stop 3102, Lubbock, TX, 79409-3102, United States
Lu Tian
Affiliation:
[email protected], Texas Tech University, Department of Physics, Campus Box 41051, Lubbock, TX, 79409-1051, United States
Song Daoying
Affiliation:
[email protected], Texas Tech University, Department of Physics, Campus Box 41051, Lubbock, TX, 79409-1051, United States
Mark Holtz
Affiliation:
[email protected], Texas Tech University, Department of Physics, Campus Box 41051, Lubbock, TX, 79409-1051, United States
Anya Lobanova
Affiliation:
[email protected], Soft-Impact, Ltd., P.O. Box 33, St.-Petersburg, 194156, Russian Federation
Get access

Abstract

We report the properties of GaN islands selectively grown by MOCVD on (0001) GaN/sapphire templates and on bare (0001) sapphire substrates. The approach allows us to grow GaN crystals with control over size and density through optical (micro-scale) and e-beam (nano-scale) lithography, and control over shape through MOCVD growth parameters. We have obtained complete pyramidal and prismatic hexagonal GaN islands. The growth characteristics are found to be very different from what we obtain for epitaxial layers, an effect which is attributed to micro/nanoloading and surface diffusion of source materials on the hard mask. From the dependence of growth rate of the pyramids with pitch we evaluate Ga surface diffusion length of ∼ 10 μm over SiO2 mask. We present a growth model based on diffusion and discuss the results of modeling with experimental data. Using micro-Raman spectroscopy the stress in pyramidal and prismatic islands was evaluated to be 20 MPa and 85 MPa, respectively. This implies that the selectively grown islands are relatively more relaxed compared to similar thickness of uniform layers. Micro catholdoluminescence (CL) shows a narrow line width and a better quality of GaN nano islands grown on e-beam lithography patterned templates. The GaN islands, of varying shapes, were overgrown with InGaN multiple quantum wells, which showed a few times stronger micro-CL emission than from GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duan, X. F. and Lieber, C. M., J. Am. Chem. Soc. 122, 188189 (2000).Google Scholar
2. Kim, J.-R., So, H. M., Park, J. W., Kim, J.-J., Kim, J., Lee, C. J., and Lyu, S. C., Appl. Phys. Lett., 80, 3548 (2002).Google Scholar
3. Zhang, J. and Zhang, L., J. Vac. Sci. Technol., B 21, 2415 (2003).Google Scholar
4. Li, J. Y., Chen, X. L., Qiao, Z. Y., Cao, Y. G., He, M., and Xu, T., Appl. Phys. A 71, 349 (2000).Google Scholar
5. Kim, Y. T., Lee, S. H., Mo, Y. H., Shim, H. W., Nahm, K. S., Suh, E.-K., Yang, J. W., Lim, K. Y., and Park, G. S., J. Cryst. Growth, 257, 97 (2003).Google Scholar
6. Kipshidze, G., Yavich, B., Chandolu, A., Yun, J., Kuryatkov, V., Ahmad, I., Aurongzeb, D., Holtz, M., and Temkin, H., Appl. Phys. Lett., 86, 33104 (2005).Google Scholar
7. Su, J., Gherasimova, M., Cui, G., Tsukamoto, H., Hana, J., Onuma, T., Kurimoto, M., Chichibu, S. F., Broadbridge, C., He, Y., and Nurmikko, A. V., App. Phys. Lett., 87, 183108 (2005).Google Scholar
8. Heikman, S., Keller, S., DenBaars, S. P., Mishra, U. K., Bertram, F., and Christen, J., Jap. J. Appl. Phys., 42, 6276 (2003).Google Scholar
9. Gibart, P., Reports on Progress in Physics 67, 667 (2004).Google Scholar
10. Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett., 67, 1541 (1995).Google Scholar
11. Nam, O. H., Bremser, M. D., Ward, B. L., Nemanich, R. J., and Davis, R. F., Jap. J. Appl. Phys., 36, L532 (1997).Google Scholar
12. Kawaguchi, Y., Honda, Y., Matsushima, H., Yamaguchi, M., Hiramatsu, K., and Sawaki, N., Jap. J. Appl. Phys., 37, L966 (1998).Google Scholar
13. Wang, Y. D., Chua, S. J., Tripathy, S., Sander, M. S., Chen, P., and Fonstad, C. G., Appl. Phys. Lett., 86, 071917 (2005).Google Scholar
14. Chen, P., Chua, S. J., Wang, Y. D., Sander, M. D., and Fonstad, C. G., Appl. Phys. Lett., 87, 143111 (2005).Google Scholar
15. Ma, E., Shen, T. D., and Wu, X. L., Nature Mater., 5, 515 (2006).Google Scholar
16. Jindal, V., Grandusky, J., Shahedipour-Sandvik, F., LeBoeuf, S., Balch, J., and Tolliver, T., Proc. MRS, 916, 0916-DD05-03 (2006).Google Scholar
17. Mitchell, C. C., Coltrin, M. E., and Han, J., J. Cryst. Growth, 222, 144 (2001), and References therein.Google Scholar
18. Khenner, M., Intern. J. Eng. Sci., 42, 1439 (2004).Google Scholar
19. Coltrin, M. E. and Mitchell, C. C, J. Cryst. Growth, 254, 35 (2003).Google Scholar
20. Ujihara, T. et al., J. Cryst. Growth, 289, 89 (2006).Google Scholar
21. Ahmad, I., Holtz, M., Faleev, N. N., and Temkin, H., J. Appl. Phys. 95, 1692 (2004).Google Scholar