Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:25:14.718Z Has data issue: false hasContentIssue false

Segregation and Diffusion of Sb Compared to as for Ultra-Shallow Implantation Into Silicon

Published online by Cambridge University Press:  01 February 2011

D. Krüger
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
P. Zaumseil
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
V. Melnik
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
R. Kurps
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
P. Formanek
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
D. Bolze
Affiliation:
IHP, Frankfurt (Oder), Im Technologiepark 25, 15236 Frankfurt (Oder), Germany, email:[email protected]
Get access

Abstract

We investigate diffusion and segregation of Sb and As after low energy implantation and annealing. Sb implantation profiles are significantly more stable against segregation for implantation energies higher than 5 keV compared to As. For ultra-shallow profiles and annealing temperatures above 850°C we demonstrate strong Sb and As segregation up to 1021 cm–3 in an interfacial layer less than 3 nm. In comparison to As antimony profiles show reduced tails mainly due to less sensitivity for excess Si self-interstitial effects generated both during implantation defect anneal and during deactivation of heavily n-doped regions by clustering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hori, A., Nakaoka, H., Unimmoto, H., et al., IEDM Techn. Digest, p.485, (1994).Google Scholar
[2] Timp, G. et al., Techn. Dig. Int. Electron. Device Meet., (Washington, 1997), p.930.Google Scholar
[3] Rousseau, P.M., Griffin, P.B., and Plummer, J. D., Appl. Phys. Lett., 65, 578 (1994).Google Scholar
[4] Rousseau, P. M., Griffin, P. B., Fang, W. T., and Plummer, J. D., Journ. Appl. Phys., 84, 3593 (1998).Google Scholar
[5] Kim, R., Aoki, T., Hirose, T., Furuta, Y., Hayashi, S., Shano, T., and Taniguchi, K., IEDM Techn. Digest, p 523 (2000).Google Scholar
[6] Sai-Halasz, G. A. and Harrison, H. B., IEEE Electr. Dev. Lett., 7, 534 (1986).Google Scholar
[7] Rücker, H., Heinemann, B., Barth, R., Bolze, D., Melnik, V. et al., Appl. Phys. Lett., 82, 826 (2003).Google Scholar
[8] Takamura, Y., Vaillionis, A., Marshall, A.F., Griffin, P.B., Plummer, J.D., J. Appl.Phys., 92, 5503 (2002).Google Scholar
[9] Shibahara, K., Egusa, K., Kamesaki, K., Furomoto, H., Jpn. J. Appl. Phys., 39, 2194 (2000)Google Scholar
[10] Ural, A., Griffin, P.B., Plummer, J.D., J. Appl. Phys., 85, 6440 (1999).Google Scholar
[11] Gaiduck, P., Fage-Pedersen, J., Hansen, J. Lunsgaard, Larsen, A. Nylansted, Phys. Rev. B 59, 7278 (1999).Google Scholar