Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T02:34:24.077Z Has data issue: false hasContentIssue false

“Seeing” the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy

Published online by Cambridge University Press:  13 February 2014

Liu Chuanpu
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Zhu Xinli
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Zhang Jiasen*
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Yu Dapeng*
Affiliation:
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of Physics, 209 Chengfu Road, Peking University, Beijing 100871, China Collaborative Innovation Center of Quantum Matter, Beijing, P.R. China
Get access

Abstract:

Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence (CL) spectroscopy, which has been turned out to be a powerful means to characterize the resonant SPPs modes confined in metal nanocavities [1∼5] . The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons. Quality factors can be directly acquired from the spectra induced by the ultrasmooth surface of the cavity and the high reflectivity of the silver (Ag) reflectors. Because of its three-dimensional confined characteristics and the omnidirectional reflectors, the nanocavity exhibits a small modal volume, small total volume, rich resonant modes, and flexibility in mode control. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maier, S. A., Plasmonics: fundamentals and applications, Springer, 2007.CrossRefGoogle Scholar
Barnes, W. L., Dereux, A., and Ebbesen, T. W., Nature 424, 824 (2003).CrossRefGoogle Scholar
Nagpal, P., Lindquist, N. C., Oh, S.-H., and Norris, D. J., Science 325, 594 (2009).CrossRefGoogle Scholar
Ozbay, E., Science 311, 189 (2006).CrossRefGoogle Scholar
Polman, A., Science 322, 868 (2008).CrossRefGoogle Scholar
Oulton, R. F., Sorger, V. J., Zentgraf, T., Ma, R. M., Gladden, C., Dai, L., Bartal, G., and Zhang, X., Nature 461, 629 (2009).CrossRefGoogle Scholar
Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., and Brongersma, M. L., Nature materials 9, 193 (2010).CrossRefGoogle Scholar
Linic, S., Christopher, P., and Ingram, D. B., Nature materials 10, 911 (2011).CrossRefGoogle Scholar
Berini, P. and De Leon, I., Nature photonics 6, 16 (2012).CrossRefGoogle Scholar
Lazar, S., Botton, G., and Zandbergen, H., Ultramicroscopy 106, 1091 (2006).CrossRefGoogle Scholar
Yamamoto, N., Araya, K., and de Abajo, F. G., Physical Review B 64, 205419 (2001).CrossRefGoogle Scholar
Ritchie, R., Physical Review 106, 874 (1957).CrossRefGoogle Scholar
Stern, E. and Ferrell, R., Physical Review 120, 130 (1960).CrossRefGoogle Scholar
Chen, C., Silcox, J., and Vincent, R., in Proceedings,... Annual Meeting, Electron Microscopy Society of America, Vol. 31, San Francisco Press, 1973, p. 284.Google Scholar
Pettit, R., Silcox, J., and Vincent, R., Physical Review B 11, 3116 (1975).CrossRefGoogle Scholar
Powell, C. and Swan, J., Physical Review 118, 640 (1960).CrossRefGoogle Scholar
Nelayah, J., Kociak, M., Stéphan, O., de Abajo, F. J. G., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L. M., and Colliex, C., Nature Physics 3, 348 (2007).CrossRefGoogle Scholar
Bosman, M., Keast, V. J., Watanabe, M., Maaroof, A. I., and Cortie, M. B., Nanotechnology 18, 165505 (2007).CrossRefGoogle Scholar
Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A. M., Novo, C., Mulvaney, P., Liz-Marzán, L. M., and de Abajo, F. J. G., Chemical Society Reviews 37, 1792 (2008).CrossRefGoogle Scholar
García de Abajo, F. J., Reviews of Modern Physics 82, 209 (2010).CrossRefGoogle Scholar
Frimmer, M., Coenen, T., and Koenderink, A. F., Physical review letters 108, 077404 (2012).CrossRefGoogle Scholar
Myroshnychenko, V., Nelayah, J., Adamo, G., Geuquet, N., Rodríguez-Fernández, J., Pastoriza-Santos, I., MacDonald, K. F., Henrard, L., Liz-Marzán, L. M., Zheludev, N. I., Kociak, M, and García de Abajo, F. J., Nano Lett 12, 4172 (2012).CrossRefGoogle Scholar
Koh, A. L., Fernández-Domínguez, A. I., McComb, D. W., Maier, S. A., and Yang, J. K., Nano Lett 11, 1323 (2011).CrossRefGoogle Scholar
Zhu, X., Zhang, Y., Zhang, J., Xu, J., Ma, Y., Li, Z., and Yu, D., Advanced Materials 2010).Google Scholar
Yang, ZHANG, Xinli, ZHU, Zhimin, LIAO, and Dapeng, Y., Journal of Chinese Electron Microscopy Society 28, 511 (2009).Google Scholar
Zhu, X., Ma, Y., Zhang, J., Xu, J., Wu, X., Zhang, Y., Han, X., Fu, Q., Liao, Z., and Chen, L., Physical review letters 105, 127402 (2010).CrossRefGoogle Scholar
Zhu, X., Zhang, J., Xu, J., and Yu, D., Nano Lett 11, 1117 (2011).CrossRefGoogle Scholar
Zhu, X. L., Zhang, J. S., Xu, J., Li, H., Wu, X. S., Liao, Z. M., Zhao, Q., and Yu, D. P., ACS Nano 5, 6546 (2011).CrossRefGoogle Scholar
Wagner, P., Hegner, M., Guentherodt, H.-J., and Semenza, G., Langmuir 11, 3867 (1995).CrossRefGoogle Scholar
Hegner, M., Wagner, P., and Semenza, G., Surface Science 291, 39 (1993).CrossRefGoogle Scholar
Graca, M., Turner, J., Marshall, M., and Granick, S., Journal of Applied Physics 102, 064909 (2007).CrossRefGoogle Scholar
Frey, W., Woods, C., and Chilkoti, A., Advanced Materials 12, 1515 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
Atay, T., Song, J.-H., and Nurmikko, A. V., Nano Lett 4, 1627 (2004).CrossRefGoogle Scholar
Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G., and Moerner, W., Nano Lett 4, 957 (2004).CrossRefGoogle Scholar
Kitson, S., Barnes, W. L., and Sambles, J., Physical review letters 77, 2670 (1996).CrossRefGoogle Scholar
Weeber, J.-C., Bouhelier, A., Colas des Francs, G., Markey, L., and Dereux, A., Nano Lett 7, 1352 (2007).CrossRefGoogle Scholar
Vesseur, E. J. R., García de Abajo, F. J., and Polman, A., Nano Lett 9, 3147 (2009).CrossRefGoogle Scholar
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J.-Y., and Ebbesen, T. W., Nature 440, 508 (2006).CrossRefGoogle Scholar
Min, B., Ostby, E., Sorger, V., Ulin-Avila, E., Yang, L., Zhang, X., and Vahala, K., Nature 457, 455 (2009).CrossRefGoogle Scholar
Wiley, B. J., Lipomi, D. J., Bao, J., Capasso, F., and Whitesides, G. M., Nano Lett 8, 3023 (2008).CrossRefGoogle Scholar
Ditlbacher, H., Hohenau, A., Wagner, D., Kreibig, U., Rogers, M., Hofer, F., Aussenegg, F., and Krenn, J., Phys Rev Lett 95, 257403 (2005).CrossRefGoogle Scholar
Kuttge, M., 2009).Google Scholar
Sorger, V. J., Oulton, R. F., Yao, J., Bartal, G., and Zhang, X., Nano Lett 9, 3489 (2009).CrossRefGoogle Scholar
Hofmann, C. E., Vesseur, E. J. R., Sweatlock, L. A., Lezec, H. J., García de Abajo, F. J., Polman, A., and Atwater, H. A., Nano Lett 7, 3612 (2007).CrossRefGoogle Scholar
Kuttge, M., Vesseur, E., and Polman, A., Appl Phys Lett 94, 183104 (2009).CrossRefGoogle Scholar
Lu, T.-C., Chen, S.-W., Wu, T.-T., Tu, P.-M., Chen, C.-K., Chen, C.-H., Li, Z.-Y., Kuo, H.-C., and Wang, S.-C., Appl Phys Lett 97, 071114 (2010).CrossRefGoogle Scholar
Arafin, S., Bachmann, A., Kashani-Shirazi, K., and Amann, M.-C., Appl Phys Lett 95, 131120 (2009).CrossRefGoogle Scholar
Jewell, J. L., Harbison, J., Scherer, A., Lee, Y., and Florez, L., Quantum Electronics, IEEE Journal of 27, 1332 (1991).CrossRefGoogle Scholar
Miyazaki, H. T. and Kurokawa, Y., Physical review letters 96, 097401 (2006).CrossRefGoogle Scholar
Kuttge, M., Vesseur, E. J. R., Koenderink, A., Lezec, H., Atwater, H., de Abajo, F. G., and Polman, A., Physical Review B 79, 113405 (2009).CrossRefGoogle Scholar
Kurokawa, Y. and Miyazaki, H. T., Physical Review B 75, 035411 (2007).CrossRefGoogle Scholar
Cai, W., Sainidou, R., Xu, J., Polman, A., and García de Abajo, F. J., Nano Lett 9, 1176 (2009).CrossRefGoogle Scholar
Prodan, E., Radloff, C., Halas, N., and Nordlander, P., Science 302, 419 (2003).CrossRefGoogle Scholar
Foresi, J., Villeneuve, P. R., Ferrera, J., Thoen, E., Steinmeyer, G., Fan, S., Joannopoulos, J., Kimerling, L., Smith, H. I., and Ippen, E., Nature 390, 143 (1997).CrossRefGoogle Scholar
Vahala, K. J., Nature 424, 839 (2003).CrossRefGoogle Scholar
Lal, S., Link, S., and Halas, N. J., Nature photonics 1, 641 (2007).CrossRefGoogle Scholar
Kuttge, M., García de Abajo, F. J., and Polman, A., Nano Lett 10, 1537 (2009).CrossRefGoogle Scholar
Hao, F., Sonnefraud, Y., Dorpe, P. V., Maier, S. A., Halas, N. J., and Nordlander, P., Nano Lett 8, 3983 (2008).CrossRefGoogle Scholar
Jackson, J. D. and Fox, R. F., American Journal of Physics 67, 841 (1999).CrossRefGoogle Scholar
Luk'yanchuk, B., Zheludev, N. I., Maier, S. A., Halas, N. J., Nordlander, P., Giessen, H., and Chong, C. T., Nature materials 9, 707 (2010).CrossRefGoogle Scholar
Miroshnichenko, A. E., Flach, S., and Kivshar, Y. S., Reviews of Modern Physics 82, 2257 (2010).CrossRefGoogle Scholar
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., and Ebbesen, T. W., Physical review letters 95, 046802 (2005).CrossRefGoogle Scholar