Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:50:18.300Z Has data issue: false hasContentIssue false

Second Harmonic Generation of Bacteriorhodopsin and its Application for Three-Dimensional Optical Memory

Published online by Cambridge University Press:  15 February 2011

Zhongping Chen
Affiliation:
Dept. of Applied Physics, Cornell University, Ithaca, NY 14850 Center for Advanced Materials, Univ. of Massachusetts Lowell, Lowell, MA 01854
A. Lewis
Affiliation:
Dept. of Applied Physics, Cornell University, Ithaca, NY 14850
J. Kumart
Affiliation:
Center for Advanced Materials, Univ. of Massachusetts Lowell, Lowell, MA 01854
S. Tripathy
Affiliation:
Center for Advanced Materials, Univ. of Massachusetts Lowell, Lowell, MA 01854
K. Marxt
Affiliation:
Center for Advanced Materials, Univ. of Massachusetts Lowell, Lowell, MA 01854
J. Akkarat
Affiliation:
Biotechnology Division, US Army Natick, RD&E Center, Natick, MA 01760
D. Kaplan
Affiliation:
Biotechnology Division, US Army Natick, RD&E Center, Natick, MA 01760
Get access

Abstract

A novel three-dimensional optical memory system based on a light transducing protein, bacteriorhodopsin, is investigated. The system uses the nonlinear optical properties of bacteriorhodopsin to accomplish reading and writing operations. A nondestructive method of reading information in three-dimensional optical memory that uses second harmonic generation is demonstrated. This method has the advantage of fast speed, is nondestructive, and has the potential for parallel access.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parthenopoulos, D. A. and Rentzepis, P. M., Science 245, 843 (1989).CrossRefGoogle Scholar
2. Strickler, J. H. and Webb, W. W., Opt. Lett. 16, 1780 (1991).CrossRefGoogle Scholar
3. Birge, R. R., IEEE Computer 35, 56 (1992).CrossRefGoogle Scholar
4. Stoeckenius, W. and Bogomolni, R., Annu. Rev. Biochem. 52, 587 (1982).CrossRefGoogle Scholar
5. Lewis, A. and Priore, V. D., Phys. Today 41, 38 (1988).CrossRefGoogle Scholar
6. Chen, Z., Lewis, A., Takei, H., and Nabenzahl, I., Appl. Opt. 30, 5188 (1991).CrossRefGoogle Scholar
7. Chen, Z. and Birge, R., Trends in Biotechnol. 11, 292 (1993).CrossRefGoogle Scholar
8. Birge, R. R. Annu. Rev. Phys. Chem. 41, 683 (1990).CrossRefGoogle Scholar
9. Brauchle, C., Hampp, N., and Oesterhelt, D., Advanced materials 3, 420 (1991).CrossRefGoogle Scholar
10. Takei, H., Lewis, A., Chen, Z., and Nebenzahl, I., Appl. Opt. 30, 500 (1991).CrossRefGoogle Scholar
11. Chen, Z., Takei, H., and Lewis, A., Proceedings,I nternationalJ oint Conference on Neural Networks II, 803 (1990).Google Scholar
12. Birge, R. R. and Zhang, C. F., J. Chem. Phys. 92, 7178 (1990).CrossRefGoogle Scholar
13. Huang, J. Y., Chen, Z., and Lewis, A., J. Phys. Chem. 93, 3314 (1989).CrossRefGoogle Scholar
14. Lewis, A., Proc. Natl. Acad. Sci. USA 75, 549 (1978).CrossRefGoogle Scholar
15. Chen, Z., Sheves, M., and Lewis, A., Submitted to Biophys. J. Google Scholar