Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-06T05:33:35.586Z Has data issue: false hasContentIssue false

Schottky-Barrier Si Nanowire MOSFET: Effects of Source/Drain Metals and Gate Dielectrics

Published online by Cambridge University Press:  01 February 2011

Weifeng Yang
Affiliation:
[email protected], SNDL, ECE department, Block E4A #02-04 Engineering Drive 3, Singapore 117576, Singapore, 117576, Singapore
Sungjin Whang
Affiliation:
[email protected], Silicon Nano Device Laboratory, ECE department, National University of Singapore, Singapore, 117576, Singapore
Sungjoo Lee
Affiliation:
[email protected], Silicon Nano Device Laboratory, ECE department, National University of Singapore, Singapore, 117576, Singapore
Haichen Zhu
Affiliation:
[email protected], Silicon Nano Device Laboratory, ECE department, National University of Singapore, Singapore, 117576, Singapore
Hanlu Gu
Affiliation:
[email protected], Silicon Nano Device Laboratory, ECE department, National University of Singapore, Singapore, 117576, Singapore
Byungjin Cho
Affiliation:
[email protected], Silicon Nano Device Laboratory, ECE department, National University of Singapore, Singapore, 117576, Singapore
Get access

Abstract

We fabricated and studied the performance of Schottky-Barrier Si nanowire FETs (SiNW FET) by using Vapor-liquid-solid (VLS) grown Au-catalyzed SiNWs (20 nm). These devices were formed on various gate dielectrics (HfO2 or Al2O3) with different metal Source and Drain (S/D) regions (Pd, Ni). P-type behavior was observed and high Ion/Ioff ratio (~105) was achieved from undoped SiNW FETs. Besides, no ambipolar transportation was observed in our devices performance. This is possibly due to the small schottky barrier height for hole carriers at Source sides formed by high work-function metal. Furthermore, low subthreshold slope as 68mV/decade was obtained from SiNW FETs integrated with Ni S/D and Al2O3 High-¦gate dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morales, Alfredo M., Lieber, Charles M., Science, 279, 208211, (1998)Google Scholar
2. Wang, Dunwei, Tu, Ryan, Zhang, Li, and Dai, Hongjie, Angew. Chem. Int. Ed., 44, 29252929, (2005)Google Scholar
3. Beckman, R.; Johnston-Halperin, E.; Luo, Y.; Green, J. E.; Heath, J. R., Science, 310, 465468, (2005).Google Scholar
4. Wagner, R. S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964)Google Scholar
5. Zheng, Gengfeng, Lu, Wei, Jin, Song, and Lieber, Charles M., Adv. Mater., 16, 18901893, 2004 Google Scholar
6. Cui, Yi, Duan, Xiangfeng, Hu, Jiangtao, and Lieber, Charles M., J. Phys.Chem.B, 104, 52135216, (2000)Google Scholar
7. Whang, S. J., Lee, S. J., Yang, W. F., Cho, B. J., Liew, Y. F., and Kwong, D. L., Electrochemical and Solid-State Letters, 10, E11–E13, (2007)Google Scholar
8. Koo, Sang-Mo, Li, Qiliang, Edelstein, Monica D., Richter, Curt A., and Vogel, Eric M., Nano Letters, 5, 25192523, (2005)Google Scholar
9. Martel, R., Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, Ph., Phys. Rev. Lett., 87, 256805/1–256805/4, (2001)Google Scholar
10. , Sang-MoKoo, Edelstein, Monica D,Li, Qiliang, ARichter, Curt and Vogel, Eric M, Nanotechnology, 16 14821485 (2005)Google Scholar
11. Wang, Dunwei, Sheriff, Bonnie A. and Heath, James R., Nano Letters, 6, 1096, (2006)Google Scholar
12. Taur, Yuan, Ning, Tak H., in Fundamentals of Modern VLSI Devices, [Cambridge University Press], p.128 Google Scholar
13. Zhu, Shiyang, Yu, H. Y., Whang, S. J., Chen, J. H., Shen, Chen, Zhu, Chunxiang, Lee, S. J., Li, M. F., Chan, D. S. H., Yoo, W. J., Du, Anyan, Tung, C. H., Singh, Jagar,Chin, Albert, and Kwong, D. L., IEEE ELECTRON DEVICE LETTERS, 25, 268270, (2004)Google Scholar