Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:00:34.375Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Studies of GaAs1-xPx Single Crystals

Published online by Cambridge University Press:  26 February 2011

X. Liu
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
E. R. Weber
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
D. F. Ogletree
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
M. Salmeron
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
T. Slupinski
Affiliation:
Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland
Get access

Abstract

We report cross-sectional scanning tunneling microscopy studies of GaAsP single crystals grown by the Liquid Encapsulated Czochralski technique. We show that the two group-V elements can be clearly distinguished, which is attributed to the difference in energies of surface dangling bond states of As and P. Our atomic scale imaging results show alloy composition in agreement with spectroscopic studies. They also provide valuable information about atomic scale alloy fluctuations and clustering effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Panish, M. B., Ilegems, M., Progress in Solid State Chemistry 2, 75 (1972).Google Scholar
[2] Tanaka, A., Watanabe, A., Kimura, M., Sukegawa, T., Cryst. Growth 125, 269 (1994).Google Scholar
[3] Sell, H.-J., J. Cryst. Growth 107 396 (1991).Google Scholar
[4] Nakajima, K., Kusunoki, T., Takenaka, C., J. Cryst. Growth 113, 485 (1991).Google Scholar
[5] Ozawa, T., Hayakawa, Y., Kumagawa, M., J. Cryst. Growth 109, 212 (1991).Google Scholar
[6] Bischopink, G., Benz, K. W., J. Cryst. Growth 97, 245 (1989).Google Scholar
[7] Slupinski, T., Przybytek, J., Wysmolek, A., Leszczynski, M., Babinski, A., Borysiuk, J., Kurpiewski, A., Barcz, A., and Stepniewski, R., Proc. Semi-Insulating III-V Materials (Warsaw, 1994), in press.Google Scholar
[8] Zheng, J. F., Liu, X., Newman, N., Weber, E. R., Ogletree, D. F., and Salmeron, M., Phys. Rev. Lett. 72, 1490 (1994).Google Scholar
[9] Frohn, J., Wolf, J. F., Besocke, K. H., and Teske, N., Rev. Sci. Instrum. 60, 1200 (1989).Google Scholar
[10] Johnson, M. B., Maier, U., Meier, H.-P., and Salemink, H. W. M., Appl. Phys. Lett. 63, 1273 (1993).Google Scholar
[11] Zheng, J. F., Walker, J. D., Salmeron, M. B., and Weber, E. R., Phys. Rev. Lett. 72, 2414 (1994).Google Scholar
[12] Lubinsky, A. R., Duke, C. B., Lee, B. W., and Mark, P., Phys. Rev. Lett. 36, 1058 (1976).Google Scholar
[13] Duke, C.B., Mailhiot, C., Paton, A., Chadi, D. J., and Kahn, A., J Vac. Sci. Technol. B 2, 1087 (1985).Google Scholar
[14] Nelson, R. J., Holonyak, N., Groves, W. O., Phys. Rev. B 13, 5415 (1976).Google Scholar