Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:42:37.113Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy and Spectroscopy of Short Multiwall Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

A. Hassanien*
Affiliation:
Nanotechnology research institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
A. Mrzel
Affiliation:
Jozef Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia
M. Tokumoto
Affiliation:
Nanotechnology research institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
X. Zhao
Affiliation:
Department of Physics, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Japan
Y. Ando
Affiliation:
Department of Physics, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Japan
D. Tománek
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116, USA
*
Corresponding Author. Electronic mail: [email protected]
Get access

Abstract

We report on the structural analysis of multiwall carbon nanotubes (MWNTs), produced by DC arc discharge in hydrogen gas, using a scanning tunneling microscope operated at ambient conditions. On a microscopic scale the images show tubes condensed in ropes as well as individual tubes which are separated from each other. Individual nanotubes exhibit various diameters (2.5-6 nm) and chiralities (0-30Å). For MWNTs rope, the outer portion is composed of highly oriented nanotubes with nearly uniform diameter (4-5 nm) and chirality. Strong correlation is found between the structural parameters and the electronic properties in which the MWNTs span the metallic-semiconductor regime. True atomic-resolution topographic STM images of the outer shell show hexagonal arrangements of carbon atoms that are unequally visible by STM tip. This suggests that the stacking nature of MWNTs, may effect the electronic band structure of the tube shells. Unlike other MWNTs produced by arc discharge in helium gas, the length of the tubes are rather short (80-500 nm), which make it feasible to use them as a components for molecular electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, Y., Hamaguchi, K., Uemura, S., Uchida, K., Tasaka, Y., Ikazaki, F., Yumura, Y., Kasuya, A., Nishina, Y., Appl. Phys. A Mater. Sci. Process. 67, 95 (1998).Google Scholar
2. Trans, S.J., Verschueren, A.R.M., Dekker, C., Nature, 393, 49 (1998).Google Scholar
3. Hamada, N., Sawada, S., Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992)Google Scholar
4. Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992).Google Scholar
5. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C., Nature, 391, 59 (1998).Google Scholar
6. Odom, T. Wang, Huang, J.L., Kim, P., Lieber, C. M., Nature, 391,62 (1998).Google Scholar
7. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S., Achiba, Y., Appl. Phys. Lett. 73, 3839 (1998).Google Scholar
8. Liu, J., Rinzler, A.G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Macias, F.R., Shon, Y., Lee, T.R., Colbert, D. T., Smalley, R. E., Science, 280, 1253, (1998)Google Scholar
9. To appear in Chem Phys. Lett.Google Scholar
10. Zhao, X., Ohkohchi, M., Wang, M., Iijima, S., Ichihashi, T. Ando, Y., Carbon 35,775 (1997).Google Scholar
11. Hassanien, A., Tokumoto, M., Umek, P., Mihailovic, D., Mrzel, A., Appl. Phys. Lett. 78, 808, (2001).Google Scholar
12. Tománek, D., Louie, S.G., Mamin, H.J., Abraham, D.W., Thomson, R.E., Ganz, E., and Clarke, J., Phys. Rev. BR 35, 7790 (1987); D. Tománek and S.G. Louie, Phys. Rev. B. 37, 8327 (1988).Google Scholar
13. Hassanien, A., Tokumoto, M., Ohshima, S., Kuriki, Y., Ikazaki, F., Uchida, K., Yumura, M., Appl. Phys. Lett, 75, 2755 (1999).Google Scholar