Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T00:57:59.203Z Has data issue: false hasContentIssue false

Scanned Electron Beam Annealing of Boron-Implanted Diodes

Published online by Cambridge University Press:  15 February 2011

T. O. Yep
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory, Palo Alto, CA 94303 and Extrion Division, Gloucester, MA 01930, USA
R. T. Fulks
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory, Palo Alto, CA 94303 and Extrion Division, Gloucester, MA 01930, USA
R. A. Powell
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory, Palo Alto, CA 94303 and Extrion Division, Gloucester, MA 01930, USA
Get access

Abstract

Successful annealing of p+ n arrays fabricated by ion-implantation of 11B (50 keV, 1 × 1014 cm-2) into Si (100 has been performed using a broadly rastered, low-resolution (0.25-inch diameter) electron beam. A complete 2" wafer could be uniformly annealed in ≃20 sec with high electrical activation (>75%) and small dopant redistribution (≃450 Å). Annealing resulted In p+n junctions characterized by low reverse current (≃4 nAcm-2 at 5V reverse bias) and higher carrier lifetime (80 μsec) over the entire 2" wafer. Based on the electrical characteristics of the diodes, we estimate that the electron beam anneal was able to remove ion implantation damage and leave an ordered substrate to a depth of 5.5 m below the layer junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamins, T. I. and Rose, P. H., J. Appl. Phys. 50, 1308 (1979).Google Scholar
2. Greenward, A. C., Kirkpatrick, A. R., Little, R. C. and Minucci, J. A., J. Appl. Phys. 50, 783 (1979)Google Scholar
3. McMahon, R. A., Speight, J. D. and Ahmed, H., Proc. Electrochem. Soc., Los Angeles, 1979 (extended Abstracts, Vol. 79–2, p. 1321).Google Scholar
4. McMahon, R. A. and Ahmed, H., Electron. Lett. 15, 45 (1979)Google Scholar
5. McMahon, R. A. and Ahmed, H., J. Vac. Sco. Technol. 16, 1840 (1979).Google Scholar
6. McMahon, R. A., Ahmed, H., Speight, J. D. and Dobson, R. M., Electron. Lett. 15, 433 (1979)Google Scholar
7. McMahon, R. A., Ahmed, H., Speight, S. D. and Dobson, R. M., Electron. Lett. 16, 295 (1980)Google Scholar
8. Regolini, J. L., Gibbons, J. F., Sigmon, T. W., Pease, R. F. W., Magee, T. J. and Peng, J., Appl. Phys. Lett. 34, 410 (1979).Google Scholar
9. Ratnakumar, K. N., Pease, R. F. W., Bartelink, D. J., Johnson, N. H. and Meindl, J. D., Appl. Phys. Lett. 35, 463 (1979)CrossRefGoogle Scholar
10. Bentini, G. G., Galloni, R. and Nipoti, R., Appl. Phys. Lett. 36, 661 (1980).Google Scholar
11. SIMS was performed using a Cameca IMF–3f ion microscope at Evans, C. A. & Assoc., San Mateo, CAGoogle Scholar
12. Michel, A. E., Fang, F. F. and Pan, E. S., J. Appl. Phys. 45, 2991 (1974).CrossRefGoogle Scholar
13. This work is being performed in collaboration with Deal, B., Delfino, M. and Razouk, R. of Fairchild Research & Development Laboratory.Google Scholar