Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T04:12:49.675Z Has data issue: false hasContentIssue false

Scaling Description of Sub-Monolayer Epitaxial Growth

Published online by Cambridge University Press:  25 February 2011

A. Zangwill*
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
Get access

Abstract

Recent experimental results aimed at the measurement of surface diffusion constants by use of scanning tunnelling microscopy and diffraction techniques have reawakened interest in the statistical properties of two-dimensional island nucleation and growth in the submonolayer regime. Classical homogeneous rate equation studies published over twenty years ago established a simple relationship among the number density of stable islands, the deposition flux, and the adatom surface diffusion constant. Recent Monte Carlo simulation studies confirm this prediction and considerably extend the scope of such a scaling description of submonolayer epitaxial growth. In this article, I review the current status of theory and experiment in this area and suggest some areas for future research.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Poppa, H., in Epitaxial Growth, edited by Matthews, J.W. (Academic, New York, 1975), Part A, pp. 215279.CrossRefGoogle Scholar
2. Walton, D., J. Chem. Phys. 37, 2182 (1962).CrossRefGoogle Scholar
3. Zinmeister, G., Thin Solid Films 2, 497 (1968);CrossRefGoogle Scholar
Zinmeister, G., Thin Solid Films 4, 363 (1969);CrossRefGoogle Scholar
Zinmeister, G., Thin Solid Films 7, 51 (1971).CrossRefGoogle Scholar
4. Stoyanov, S. and Kashchiev, D., in Current Topic in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), Volume 7, pp. 69141.Google Scholar
5. Venables, J.A., Spiller, G.D.T., and Hanbücken, M., Rep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
6. Mo, Y.W., Kleiner, J., Webb, M.B. and Lagally, M., Phys. Rev. Lett. 66, 1998 (1991).CrossRefGoogle Scholar
7. Ernst, H.-J., Fabre, F. and Lapujoulade, J., Phys. Rev. B46, 1929 (1992).CrossRefGoogle Scholar
8. Villain, J., Pimpinelli, A. and Wolf, D.E., Comments Cond. Mat. Phys. 16, 1 (1992).Google Scholar
9. Pimpinelli, A., Villain, J. and Wolf, D.E., Phys. Rev. Lett. 69, 985 (1992);CrossRefGoogle Scholar
Villain, J., Pimpinelli, A., Tang, L. and Wolf, D.E., Physique, J. (in press).Google Scholar
10. Keizer, J., J. Phys. Chem. 86, 5052 (1982).CrossRefGoogle Scholar
11. Tang, L.-H., Physique, J. (in press).Google Scholar
12. Bartelt, M. and Evans, J.W., Phys. Rev. B46, 12675 (1992).CrossRefGoogle Scholar
13. Lewis, B. and Campbell, D.S., J. Vac. Sci. Tech. 4, 209 (1967).CrossRefGoogle Scholar
14. Frankl, D.R. and Venables, J.A., Adv. Phys. 19, 409 (1970).CrossRefGoogle Scholar
15. Family, F. and Meakin, P., Phys. Rev. A40, 3836 (1989).CrossRefGoogle Scholar
16. Stowell, M.J., Phil. Mag. 21, 125 (1970).CrossRefGoogle Scholar
17. Rogers, T.M., Elder, K.R. and Desai, R., Phys. Rev. A38, 5303 (1988).CrossRefGoogle Scholar
18. Walton, D., Rhodin, T.N. and Rollins, R., J. Chem. Phys. 38, 2695 (1963).CrossRefGoogle Scholar
19. Haider, N., Clarke, S., Wilby, M.R. and Vvedensky, D.D. (unpublished).Google Scholar
20. Venables, J.A., Phil. Mag. 27, 697 (1973).CrossRefGoogle Scholar
21. Fuoss, P.H., Kisker, D.W., Lamelas, F.J., Stephenson, G.B., Imperatori, P. and Bren-nan, S., Phys. Rev. Lett. 69, 2791 (1992).CrossRefGoogle Scholar
22. Vincent, R., Proc. Roy. Soc. Lond. A321, 53 (1971).Google Scholar
23. Ghaisas, S.V. and Das Sarma, S., Phys. Rev. B46, 7308 (1992).CrossRefGoogle Scholar
24. Nieminen, J.A. and Kaski, K., Phys. Rev. A40, 2088 (1989).CrossRefGoogle Scholar