Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T08:57:06.412Z Has data issue: false hasContentIssue false

Rutherford Backscattering and Channeling Studies of Laser Annealed, Nitrogen Implanted and Non-Implanted Single Crystal Austenitic Stainless Steel.

Published online by Cambridge University Press:  25 February 2011

J. L. Whitton
Affiliation:
Physics Department, Queen's University, Kingston, Ont., Canada.
T. Laursen
Affiliation:
Physics Department, Queen's University, Kingston, Ont., Canada.
J. A. Nilson
Affiliation:
Lumonics Inc., 105, Schneider Road, Kanata, Ont., Canada.
Wing Nip
Affiliation:
Lumonics Inc., 105, Schneider Road, Kanata, Ont., Canada.
I. V. Mitchell
Affiliation:
Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ont., Canada.
H. H. Plattner
Affiliation:
Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ont., Canada.
M. L. Swanson
Affiliation:
Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ont., Canada.
Get access

Abstract

Ion backscattering and channeling of 2.0 MeV He+ has been used to observe the effects of excimer laser annealing on unimplanted and nitrogen implanted single crystal austenitic stainless steel. The laser annealing was done either in air or in flowing helium. In general, laser annealing resulted in a significant increase in lattice disorder of both unimplanted and implanted specimens. Laser annealing in helium atmosphere caused a near-surface decrease of disorder in the implanted specimens with, however, a higher dechanneling rate at greater depths. Channeling with nuclear reaction analysis shows that the as - implanted nitrogen occupies octahedral interstitial sites as evidenced by flux peaking along the <110> axis and a decreased signal along the <100> axis. A similar effect is observed after laser annealing in a helium atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Picraux, S.T. and Pope, L.E.. Science 226 615 (1984)10.1126/science.226.4675.615CrossRefGoogle Scholar
2. Picraux, S.T. Annu. Rev. Mater, Sci. 14 335 (1984)Google Scholar
3. Dearnaley, G. J. Met. 34 18 (1982)Google Scholar
4. Hubler, G.K.. Metastable Materials Formation by Ion Implantation (North Holland, N.Y. 1982) Eds. S.T., Picraux and W.J., Choyke. p. 341 Google Scholar
5. Whitton, J.L., Ferguson, M.M., Ewan, G.T., Mitchell, I.V. and Plattner, H.H.. Appl. Phys. Lett., 41 (2) 150 (1982)10.1063/1.93434CrossRefGoogle Scholar
6. Ferguson, M.M., Ewan, G.T., Plattner, H.H., Swanson, M.L. and Whitton, J.L. Nucl. Instrum. and Methods in Physics Research,B2 741 (1984)10.1016/0168-583X(84)90305-7CrossRefGoogle Scholar
7. Besenbacher, F., Nielsen, B.B. and Whitton, J.L., Nucl. Instrum. and Methods., 218 551 (1983)10.1016/0167-5087(83)91040-2CrossRefGoogle Scholar
8. Whitton, J.L., Ewan, G.T., Ferguson, M.M., Laursen, T., Mitchell, I.V., Plattner, H.H., Swanson, M.L., Drigo, A.V., Celotti, G. and Grant., W. A. J. Mat. Sci. Engineering - to be published (1985)Google Scholar
9. Follstaedt, D.M., Picraux, S.T., Peercy, P.S. and Wampler, W.R.. Appl. Phys. Lett. 39 (4) (1981)10.1063/1.92709CrossRefGoogle Scholar
10. Buene, L., Poate, J.M., Jacobson, D.C., Draper, C.W. and Hirvonen, J.K.. Appl. Phys. Lett. 37 (4) 385, (1980)10.1063/1.91952CrossRefGoogle Scholar
11. Mea, G. Della and Mazzoldi, P.. Laser-Solid Interaction and Laser Processing - 1978. Eds. S.D., Ferris, H.J., Leamy and J.M, Poate (AlP - New York 1979). p. 212 Google Scholar
12. Swanson, M.L., Howe, L.M., Quenneville, A.F. and Nilson, J.A.. Nucl. Instrum. Methods 218 643 (1983)10.1016/0167-5087(83)91057-8CrossRefGoogle Scholar