Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T06:32:40.141Z Has data issue: false hasContentIssue false

Routes to Control the Chemical Potential and to Modulate the Reactivity of Nanodiamond Surfaces

Published online by Cambridge University Press:  23 March 2015

Giacomo Reina
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Silvia Orlanducci
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Stefano Gay
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Angelo Gismondi
Affiliation:
Dept. of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Teresa Lavecchia
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Maria Letizia Terranova
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Emanuela Tamburri
Affiliation:
Dept. Science and Chemical Technology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, Rome 00133, Italy
Get access

Abstract

The use of detonation nanodiamond (DND) for drug delivery and cell-imaging is grounded on its chemical functionalization, and the key task to be addressed is the capability to simplify the process steps, to reduce the process times and to maximize the drug/ligand uptake. The idea underlying the present research is to modulate the loading capability of DND by controlled modification of the surface organic groups. To this aim the DND samples are treated either by wet chemistry, using medium-strong reducing agents, or by tunable H-plasmas produced in a custom-designed MW-RF reactor. The affinity of the treated DND surfaces for drugs has been probed by conjugating the ciproten (5,7- dimethoxycoumarin), a natural antioxidant molecule, and by testing in vitro the feasibility to use coumarin vehicled by nanodiamond (C@DND) as chemioterapeutic drug. The methodologies developed to modify the DND surfaces are offering practical solutions to the still open problems related to DND-based systems for drug delivery applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Peristyy, A. A., Fedyanina, O. N., Paull, B., & Nesterenko, P. N. (2014). Diamond based adsorbents and their application in chromatography. Journal of Chromatography A, 1357, 6886.CrossRefGoogle ScholarPubMed
Turner, S., Lebedev, O. I., Shenderova, O., Vlasov, I. I., Verbeeck, J., & Van Tendeloo, G. (2009). Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy. Advanced functional materials, 19(13), 2116.CrossRefGoogle Scholar
Yeap, W. S., Chen, S., & Loh, K. P. (2008). Detonation nanodiamond: an organic platform for the suzuki coupling of organic molecules. Langmuir, 25(1), 185.CrossRefGoogle Scholar
Xu, K., & Xue, Q. (2004). A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method. Physics of the Solid State, 46(4), 649.CrossRefGoogle Scholar
Larionova, I., Kuznetsov, V., Frolov, A., Shenderova, O., Moseenkov, S., & Mazov, I. (2006). Properties of individual fractions of detonation nanodiamond. Diamond and related materials, 15(11), 1804.CrossRefGoogle Scholar
Batsanov, S. S., Osavchuk, A. N., Naumov, S. P., Efimov, A. E., Mendis, B. G., Apperley, D. C., & Batsanov, A. S. (2014). Synthesis and Properties of Hydrogen‐Free Detonation Diamond. Propellants, Explosives, Pyrotechnics.Google Scholar
Greiner, N. R., Phillips, D. S., Johnson, J. D., & Volk, F. (1988). Diamonds in detonation soot. Nature 333, 440.CrossRefGoogle Scholar
Shenderova, O., McGuire, G., & Gogotsi, Y. (2006). Nanomaterials Handbook. CRC Taylor and Francis Group, Boca Raton, 203.Google Scholar
Barnard, A. S. (2009). Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst, 134(9), 1751.CrossRefGoogle ScholarPubMed
Kaur, R., & Badea, I. (2013). Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. International journal of nanomedicine, 8, 203.Google ScholarPubMed
Mochalin, V. N., Shenderova, O., Ho, D., & Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology, 7(1), 11.CrossRefGoogle Scholar
Shenderova, O., Petrov, I., Walsh, J., Grichko, V., Grishko, V., Tyler, T., & Cunningham, G. (2006). Modification of detonation nanodiamonds by heat treatment in air. Diamond and related materials, 15(11), 1799.CrossRefGoogle Scholar
Xu, X., Yu, Z., Zhu, Y., & Wang, B. (2005). Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. Journal of Solid State Chemistry, 178(3), 688.CrossRefGoogle Scholar
Tamburri, E., Guglielmotti, V., Matassa, R., Orlanducci, S., Gay, S., Reina, G., Terranova, M. L., Passeri, D. & Rossi, M. (2014). Detonation nanodiamonds tailor the structural order of PEDOT chains in conductive coating layers of hybrid nanoparticles. Journal of Materials Chemistry C, 2(19), 3703.CrossRefGoogle Scholar
Tamburri, E., Orlanducci, S., Guglielmotti, V., Reina, G., Rossi, M., & Terranova, M. L. (2011). Engineering detonation nanodiamond–Polyaniline composites by electrochemical routes: Structural features and functional characterizations. Polymer, 52(22), 5001.CrossRefGoogle Scholar
Rape, A., Liu, X., Kulkarni, A., & Singh, J. (2013). Alloy development for highly conductive thermal management materials using copper-diamond composites fabricated by field assisted sintering technology. Journal of Materials Science, 48(3), 1262.CrossRefGoogle Scholar
Kovalenko, I., Bucknall, D. G., & Yushin, G. (2010). Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors. Advanced Functional Materials, 20(22), 3979.CrossRefGoogle Scholar
Shugalei, I. V., Voznyakovskii, A. P., Garabadzhiu, A. V., Tselinskii, I. V., Sudarikov, A. M., & Ilyushin, M. A. (2013). Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russian Journal of General Chemistry, 83(5), 851.CrossRefGoogle Scholar
Welch, J. O. (2014). Nanodiamonds: From biology to engineering (Doctoral dissertation, UCL (University College London)).Google Scholar
Krueger, A., Stegk, J., Liang, Y., Lu, L., & Jarre, G. (2008). Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 24(8), 4200.CrossRefGoogle ScholarPubMed
Yeap, W. S., Tan, Y. Y., & Loh, K. P. (2008). Using detonation nanodiamond for the specific capture of glycoproteins. Analytical chemistry, 80(12), 4659.CrossRefGoogle ScholarPubMed
Reina, G., Orlanducci, S., Cairone, C., Tamburri, E., Lenti, S., Cianchetta, Rossi M. & Terranova, M. L. (2015). Rhodamine/Nanodiamond as a System Model for Drug Carrier. Journal of Nanoscience and Nanotechnology, 15(2), 1022.CrossRefGoogle ScholarPubMed
Orlanducci, S., Toschi, F., Guglielmotti, V., Tamburri, E., Terranova, M. L., Rossi, M. (2011). Detonation nanodiamond as building blocks for fabrication of densely packed arrays of diamond nanowhiskers. Nanoscience and Nanotechnology Letters, 3, 83.CrossRefGoogle Scholar
Gismondi, A., Reina, G., Orlanducci, S., Mizzoni, F., Gay, S., Terranova, M. L., & Canini, A. (2015). Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials, 38, 22.CrossRefGoogle ScholarPubMed
Tabolacci, C., Lentini, A., Mattioli, P., Provenzano, B., Oliverio, S., Carlomosti, F., Beninati, S. (2010). Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16–F10 melanoma cells. Life sciences, 87(9), 316.CrossRefGoogle ScholarPubMed