Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-03T08:44:50.172Z Has data issue: false hasContentIssue false

Rotational Diffusion of Chromophores Inside a Glassy Polymeric Film Studied By Electrooptical Interferometry

Published online by Cambridge University Press:  25 February 2011

R. Meyrueix
Affiliation:
Rhône-Poulenc Recherches, 85 avenue des Fréres Perret, B.P. 62, 69192 SAINT FONS CEDEX -, France
G. Mignani
Affiliation:
Rhône-Poulenc Recherches, 85 avenue des Fréres Perret, B.P. 62, 69192 SAINT FONS CEDEX -, France
Get access

Abstract

Perot Fabry interferometry under oblique incidence provides a powerful tool for the determination of the complex values of the independant components of the tensors χ2(−ω;ω,ο) and χ3(−ω;ω,ο,ο) of poled films. Deorientation of Disperse Red One chromophore in a poled film can be followed by the decrease with time of two order parameters. In the short term regime, the relaxation times of this process are spread over a broad spectrum. By comparing the chromophore dynamics in PMMA, PS and SAN at different temperatures, it appears that free volume and secondary transition concepts cannot fully explain the chromophore behavior. Chromophore dipole/Polymer dipole interactions are invoked in order to explain the slow deorientation rate in SAN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ulrich, D.R., Mol.Cryst.Liq.Cryst., 160 (1), 31 (1988).Google Scholar
2. Meredith, G.R., Van Duren, J.G., Williams, D.J., Macromol., 15, 1385 (1982).CrossRefGoogle Scholar
3. Singer, K.D., Kuryk, M.G., Sohn, J.E., J.Opt.Soc.Am.B 4 (6), 908 (1987).CrossRefGoogle Scholar
4. Blumenfeld, L.A., Chernyakovskii, F.P., Gribanov, V.A., Kanerskii, I.M., J.Macromol. Sci. - Chem A, 6 (7), 1201 (1972).CrossRefGoogle Scholar
5. Hampsch, H.L., Yang, J., Wong, G.K., Macromol., 21, 526 (1988).CrossRefGoogle Scholar
6. Hampsch, H.L., Yang, J., Wong, G.K., Torkelson, J.M., Pol. Com., 30, 40 (1989).Google Scholar
7. Meyrueix, R., Mignani, G., Int.Congr.Opt.Sci.Eng.of SPIE Int.Soc.Opt.Eng. Paris, April 24–28, Paper 112728, (1989).Google Scholar
8. Mortazavi, M.A., Knoesen, A., Kowel, S.T., Higgins, B.G. et al., J.Opt.Soc.Am. B, 6 (4), 733 (1989).CrossRefGoogle Scholar
9. Sigelle, M., Hierle, R., J.Appl.Phys., 52, 4199 (1981).CrossRefGoogle Scholar
10. Khanarian, G., Che, T., De Martino, R.N. et al. SPIE, Vol. 824, p.72 (1987) .Google Scholar
11. Cross, G.H., Girling, I.R., Peterson, I.R., Cade, N.A., Elect.Lett., 21Google Scholar
12. Uchiki, H., Kobayashi, T., J.Appl.Phys., 64 (5), 2625 (1988).CrossRefGoogle Scholar
13. Kuzyk, M.G., Dirk, C.W., Appl.Phys.Lett., 54 (17), 1628, (1989).CrossRefGoogle Scholar
14. Ferry, J.D., Viscoelastic properties of polymers, Wiley, (1980).Google Scholar
15. Boyd, G.T., Thin Solid Films, 152, 295 (1987).CrossRefGoogle Scholar
16. Struik, L.C.E., Polymer, 28, 57 (1987).CrossRefGoogle Scholar
17. Yeh, P., J.Opt.Soc.Am., 69, 742 (1979).CrossRefGoogle Scholar
18. Ye, C., Minami, N., Marks, T.J., Yong, J., Wong, G.K., Macromol., 21 2999, (1988).CrossRefGoogle Scholar
19. Böttcher, C.J.F., Theory of electrical polarization, Elsevier, (1973).Google Scholar