Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T13:48:49.387Z Has data issue: false hasContentIssue false

Room-Temperature Nanoimprint Lithography

Published online by Cambridge University Press:  01 February 2011

Ken-Ichiro Matsui
Affiliation:
[email protected], University of Hyogo, 3-1-2 Koto kamigori, Ako, Hyogo, 678-1205, Japan
Shinji Matsui
Affiliation:
[email protected], University of Hyogo, 3-1-2 Koto kamigori, Ako,, Hyogo, 678-1205, Japan
Get access

Abstract

Room-temperature nanoimprint lithography (RT-NIL) using spin-coated hydrogen silsesquioxane (HSQ) resin as the replication material was developed. HSQ pattern with 50 nm linewidth was successfully obtained by the RT-NIL. Postbaking temperature dependence of a HSQ imprinted depth on a mold linewidth was investigated. HSQ imprinted depth had a dependence on the mold linewidth. This revealed that the RT-NIL is suitable for the linewidths of below 1 mm. Furthermore, we have also developed a new imprinting technique that uses liquid-phase hydrogen silsesquioxane (HSQ) as an alternative to the spin-coated HSQ resin. The liquid-phase HSQ imprint technique enabled fabrication of various HSQ patterns with a wide range of linewidths from 25 nm to 300 mm. Arbitrary patterns, including both submicron and greater than 100 micron patterns, were simultaneously replicated with a one-step imprint process, something very difficult to accomplish with spin-coated HSQ. Moreover, after imprinting, the residual HSQ layer in the compressed area was less than 10 nm thick.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refernces

1. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., Appl. Phys. Lett. 67, 3114 (1995)Google Scholar
2. Chou, S. Y., Krauss, P. R., and Renstrom, P. J., Science 272, 85 (1996).Google Scholar
3. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L., and Zhuang, L., J. Vac. Sci. Technol., B15, 2897 (1997).Google Scholar
4. Sun, X., Zhuang, L., Zhang, W., and Chou, S. Y., J. Vac. Sci. Technol., B16, 3922 (1998).Google Scholar
5. Heidari, B., Maximov, I., and Montelius, L., J. Vac. Sci. Technol., B18, 3557 (2000).Google Scholar
6. Schift, H., Jaszewski, R. W., David, C., and Gobrecht, J., Microelectronic Eng., 46, 121 (1999).Google Scholar
7. Bailey, T., Choi, B. J., Colburn, M., Meissl, M., Shaya, S., Ekerdt, J. G., Sreenivasan, S. V., and Willson, C. G., J. Vac. Sci. Technol., B18, 3572 (2000).Google Scholar
8. Wu, W., Sun, B. C. X., Zhang, W., Zhuang, L., Kong, L., and Chou, S. Y., J. Vac. Sci. Technol., B16, 3825 (1998).Google Scholar
9. Zhuang, L., Guo, L., and Chou, S. Y., Appl. Phys. Lett., 72, 1205 (1998).Google Scholar
10. Wang, J., Schablitsky, A., Yu, Z., Wu, W., and Chou, S. Y., J. vac. Sci. technol., B17, 2957 (1999).Google Scholar
11. Martini, I., Kuhn, S., Kamp, M., Worschech, L., Forchel, A., Eisert, D., Koeth, J., and Sijbesma, R., J. Vac. Sci. Technol., B18, 3561 (2000).Google Scholar
12. Matsui, S., Igaku, Y., Ishigaki, H., Fujita, J., Ishida, M., Ochiai, Y., Namatsu, H., Komuro, M., and Hiroshima, H., J. Vac. Sci. Technol., B21, 688 (2003).Google Scholar
13. Nakamatsu, K., Watanabe, K., Tone, K., Katase, T., Hattori, W., Ochiai, Y., Matsuo, T., Sasago, M., Namatsu, H., Komuro, M. and Matsui, S., Jpn. J. Appl. Phys., 43, 4050 (2004).Google Scholar
14. Nakamatsu, K., Watanabe, K., Tone, K., Namatsu, H. and Matsui, S., J. Vac. Sci.Technol., B 23, 507 (2005).Google Scholar
15. Komuro, M., Taniguchi, J., Inoue, S., Kimura, N., Tokano, Y., Hiroshima, H., and Matsui, S., Jpn. J. Appl. Phys., 39, 7075 (2000).Google Scholar
16. Namatsu, H., Takahashi, Y., Yamazaki, K., Yamaguchi, T., Nagase, M., and Kurihara, K., J. Vac. Sci. Technol. B16, 69 (1998).Google Scholar
17. Zhao, J. H., Malik, I., Ryan, T., Ogawa, E. T., Ho, P. S., Shih, W. Y., McKerrow, A. J. and Taylor, K. J.: Appl. Phys. Lett 74 (1999) 944.Google Scholar