Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:30:59.406Z Has data issue: false hasContentIssue false

Room Temperature Boron Diffusion in Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Jeannette M. Jacques
Affiliation:
[email protected], Texas Instruments, Inc., Silicon Technology Development, 13121 TI Blvd., MS/365, Dallas, Texas, 75243, United States, 972-995-3453, 942-995-6383
Kevin S. Jones
Affiliation:
[email protected], University of Florida, Materials Science & Engineering, Gainesville, Florida, 32611, United States
Mark E. Law
Affiliation:
[email protected], University of Florida, Electrical & Computer Engineering, Gainesville, Florida, 32611, United States
Lance S. Robertson
Affiliation:
[email protected], Texas Instruments, Inc., Dallas, Texas, 75243, United States
Leonard M. Rubin
Affiliation:
[email protected], Axcelis Technologies, Beverly, MA, 01915, United States
Enrico Napolitani
Affiliation:
[email protected], MATIS-CNR-INFM and Dipartimento di Fisica, Padova, N/A, N/A, Italy
Get access

Abstract

As millisecond annealing is increasingly utilized, the as-implanted profile dominates the final dopant distribution. We characterized boron diffusion in amorphous silicon prior to post-implantation annealing. SIMS confirmed that both fluorine and germanium enhance boron motion in amorphous materials. The magnitude of boron diffusion in germanium amorphized silicon scales with increasing fluorine dose. Boron atoms are mobile at concentrations approaching 1x1019 atoms/cm^3. It appears that defects inherent to the structure of amorphous silicon can trap and immobilize boron atoms at room temperature, but that chemical reactions involving Si-F and Si-Ge eliminate potential trapping sites. Sequential Ge+, F+, and B+ implants result in 80% more boron motion than do sequential Si+, F+, and B+ implants. The mobile boron dose and trapping site concentration change as functions of the fluorine dose through power law relationships. As the fluorine dose increases, the trapping site population decreases and the mobile boron dose increases. This reduction in trap density can result in as-implanted “junction depths” that are as much as 75% deeper (taken at 1x1018 atoms/cm-3) for samples implanted with 500 eV, 1x1015 atoms/cm2 boron.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baek, S., Jang, T., and Hwang, H., Appl. Phys. Lett. 80 (13), 2272 (2002)Google Scholar
2 Fortunato, G., Mariucci, L., Stanizzi, M., Privitera, V., Whelan, S., Spinella, C., Mannino, G., Italia, M., Bongiorno, C., and Mittiga, A., Nucl. Inst. Meth. Phys. Res. B 186, 401 (2002).Google Scholar
3 Gebel, T., Voelskow, M., Skorupa, W., Mannino, G., Privitera, V., Priolo, F., Napolitani, E., and Carnera, A., Nucl. Inst. Meth. Phys. Res. B 186, 287 (2002).Google Scholar
4 Tsukamoto, H., Solid-State Electron. 43, 487 (1999).Google Scholar
5 Juang, M.H., Wan, F.S., Liu, H.W., Cheng, K.L., and Cheng, H.C., J. Appl. Phys. 71 (7), 3628 (1992)Google Scholar
6 Juang, M.H. and Cheng, H.C., Appl. Phys. Lett. 60 (17), 2092 (1992)Google Scholar
7 Napolitani, E., Coati, A., Salvador, D. De, Carnera, A., Mirabella, S., Scalese, S., and Priolo, F., Appl. Phys. Lett. 79 (25), 4145 (2001)Google Scholar
8 Privitera, V., Spinella, C., Fortunato, G., and Mariucci, L., Appl. Phys. Lett. 77 (4), 552 (2000)Google Scholar
9 Jacques, J.M., Jones, K.S., Robertson, L.S., Li-Fatou, A., Hazelton, C.M., Napolitani, E., and Rubin, L.M., J. Appl. Phys. 98, 073521 (2005).Google Scholar
10 Jacques, J.M., Robertson, L.S., Law, M.E., Jones, K.S., Rendon, M.J., and Bennett, J., Mater. Res. Soc. Symp. Proc. 717, C4.6.1 (2002)Google Scholar
11 Napolitani, E., Salvador, D. De, Storti, R., Carnera, A., Mirabella, S., Priolo, F., Phys. Rev. Lett. 93, 055901 (2004).Google Scholar
12 Ziegler, J.F. and Biersack, J.P., The Stopping and Range of Ions in Matter (SRIM-2000.4) (IBM Co., Maryland, 1999).Google Scholar
13 Roorda, S., Ph.D. Thesis (1990) Relaxation and Crystallization of Amorphous Silicon. The Rijksuniversiteit, Utrecht, The Netherlands.Google Scholar
14 Roorda, S., Poate, J.M., Jacobson, D.C., Dennis, B.S., Dierker, S., and Sinke, W.C., Appl. Phys. Lett. 56 (21), 2097 (1990)Google Scholar
15 Roorda, S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Dierker, S., Dennis, B.S., Eaglesham, D.J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44 (8), 3702 (1991)Google Scholar
16 Roorda, S., Nucl. Inst. & Meth. Phys. Res. B 148, 366 (1999).Google Scholar
17 Hobler, G., Simionescu, A., Palmetshofer, L., Tian, C., and Stingeder, G., J. Appl. Phys. 77, 3697 (1995).Google Scholar
18 Hobler, G. and Otto, G., Mater. Sci. Semicond. Process. 6, 1 (2003).Google Scholar
19 Ion Implantation Science and Technology, 2004 ed., edited by Ziegler, J. F. (Ion Implantation Technology Co., New York, 2004) pp. 58.Google Scholar
20 Spitzer, W.G., Huber, G.K., and Kennedy, T.A., Nucl. Inst. Meth. 209/210, 309 (1983)Google Scholar
21 Brodsky, M.H. and Kaplan, D., J. Non-Cryst. Solids 32, 431 (1979).Google Scholar
22 Kalpan, D., Sol, N., Velasco, G., and Thomas, P., Appl. Phys. Lett. 33, 440 (1978).Google Scholar
23 Dannefaer, S., Mascher, P., and Kerr, D., Phys. Rev. Lett. 56, 2195 (1986).Google Scholar
24 Collart, E.J.H., Weemers, K., Cowern, N.E.B., Politiek, J., Bancken, P.H.L., Berkum, J.G.M. van, and Gravesteijn, D.J., Nucl. Inst. Meth. Phys. Res. B 139, 98 (1998).Google Scholar
25 Cowern, N.E.B., Appl. Phys. Lett. 64 (20), 2646 (1994)Google Scholar