Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T15:28:07.228Z Has data issue: false hasContentIssue false

The Roles of Energetic Displacement Cascades in Ion Beam Modifications of Materials

Published online by Cambridge University Press:  28 February 2011

R. S. Averback
Affiliation:
Argonne National Laboratory, Argonne, Il.60439, (New Address: University of Illinois at Urbana, 61801)
S. -J. Kim
Affiliation:
California Institute of Technology, Pasadena, Ca, 91125
T. Diaz de la Rubia
Affiliation:
SUNY at Albany, Albany, N.Y, 12222
Get access

Abstract

The roles of energetic displacement cascades are ubiquitous in the fields of radiation damage and ion beam modifications of materials. These roles can be described on two time scales. For the first, which lasts ≈ 10-11 s, small cascade volumes are characterized by large supersaturations of point defects, structural disorder, and energy densities in excess of some tenths of eV's per atom. During this period, the system can be driven far from equilibrium with significant rearrangement of target atoms and the production of Frenkel pairs. Experimental studies of ion beam mixing in conjunction with molecular dynamics computer simulations, have contributed largely toward understanding these dynamic cascade processes. At later times, the microstructure of the material evolves as cascades begin to overlap, or at elevated temperatures, point defects migrate away from their nascent cascades. It will be shown how the primary state of damage in cascades influences this microstructural development. Examples involving radiation-enhanced diffusion and ion-induced amorphization will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beeler, J. R. Jr. and Beeler, M. F., in Fundamental Aspects of Radiation Damage in Metals, USERDA CONF–751006–Pl (1976) p. 28.Google Scholar
2. See e.g., Winterbon, K.B., Ion Implantation and Energy Deposition Distributions, vol.2 (Plenum Press, New York, 1975).CrossRefGoogle Scholar
3. Gibson, J. B., Goland, A. N., Milgram, M. and Vineyard, G. H., Phys. Rev. 120, 1229 (1960).CrossRefGoogle Scholar
4. Kirk, M. A. and Blewitt, T. H., Met. Trans.,9A, 1729 (1978).CrossRefGoogle Scholar
5. Wei, C. Y., Current, M. I., and Seidman, D. N., Phil. Mag.A, 43, 1419 (1981).CrossRefGoogle Scholar
6. Kinchin, G.vH. and Pease, R. S., Rep. Prog. Phys. 18, 1 (1955).CrossRefGoogle Scholar
7. Sigmund, P., Radiat. Effects, 1, 15 (1969).CrossRefGoogle Scholar
8. Beeler, J. R. Jr., Phys. Rev. 150, 470 (1966).CrossRefGoogle Scholar
9. Robinson, M. T. and Torrens, I. M., Phys. Rev.B, 1 (1974) 5008.CrossRefGoogle Scholar
10. Averback, R. S., Benedek, R., and Merkle, K. L., Phys. Rev.B, 18, 4156 (1978).CrossRefGoogle Scholar
11. Jung, P., J. Nucl. Mater., 117., 70 (1983).CrossRefGoogle Scholar
12. Wei, C.-Y., Current, M. I., and Seidman, D. N., Phil. Mag. A, 44, 459 (1981).CrossRefGoogle Scholar
13. Guinan, M. W. and Kinney, J. H., J. Nucl. Mater. 108–109, 95 (1982).CrossRefGoogle Scholar
14. Guinan, M. W. and Kinney, J. H., J. Nucl. Mater. 103/104, 1319 (1981),CrossRefGoogle Scholar
15. King, W. E. and Benedek, R., J. Nucl. Mater. 117, 26 (1983).CrossRefGoogle Scholar
16. Diaz de la Rubia, T., Averback, R. S., Benedek, R. and King, W., unpublished.Google Scholar
17. Johnson, W. L., Nucl. Instr. and Meth. B, 7/16 657 (1985).CrossRefGoogle Scholar
18. Averback, R. S., Nucl. Instr. and Meth., B15, 675 (1986).CrossRefGoogle Scholar
19. Anderson, H. H., Appl. Phys. 18 (1979) 131.CrossRefGoogle Scholar
20. Littmark, U., Nucl. Instr. Meth. B 7/8, 684 (1985).CrossRefGoogle Scholar
21. Averback, R. S., Peak, D., and Thompson, L. J., Appl. Phys. A, 39, 59 (1986).CrossRefGoogle Scholar
22. Peak, D. and Averback, R. S., Nucl. Instr. Met. B7/8, 561 (1985).CrossRefGoogle Scholar
23. Kim, S.-J., Nicolet, M-A., Averback, R. S., and Peak, D., Phys. Rev. B, in press.Google Scholar
24. Diaz de la Rubia, T., Averback, R. S., Benedek, R. and King, W.E., (unpublished).Google Scholar
25. SUPERGLOB was written by Beeler, J.R. Jr., Univ. of N. Carolina.Google Scholar
26. Cheng, Y.-T., Van Rossum, M., Nicolet, M-A., and Johnson, W.L., Appl. Phys. Lett. 45), 185 (1984.CrossRefGoogle Scholar
27. Westendorp, H., Wang, Z.-L. and Saris, F.W., Nucl. Instr. and Meth. 194, 453 (1982).CrossRefGoogle Scholar
28. Kloska, M. and Meyer, O., Phys. Rev. Lett. in press.Google Scholar
29. LUck, G. and Sizmann, R., Phys. Stat. Solidi,,5 683 (1964).CrossRefGoogle Scholar
30. Wollenberger, H.J., in Vacancies and Interstitials in Metals, eds. Seeger, A.. et al (North Holland, Amsterdam, 1970) p. 215.Google Scholar
31. English, C. A. and Jenkins, M. L., in Vacancies and Interstitials in Metals and Alloys, ed. Abromeit, C., in press.Google Scholar
32. Blewitt, T. H., Bull. Am. Phys. Soc., 1957.Google Scholar
33. Schulson, E. M., J. Nucl. Mater. 83, 239 (1979)CrossRefGoogle Scholar
34. Luzzi, D. E., Mori, H., Fujita, H., and Meshii, M., seam-Solid Interactions and Phase Transformations, eds. Kurz, H. et al., MRS Symposium Series, Vol.51, 1986, p. 479.Google Scholar
35. Holz, M., Ziemann, P. and Bickel, W., Phys. Rev. Lett. 51, 1584 (1983).CrossRefGoogle Scholar
36. Mori, H., Fujita, H., and Fujita, M., Jap. J. Appl. Phys., 22 L94 (1983).CrossRefGoogle Scholar
37. Howe, L. M. and Rainville, M., J. Nucl. Mater., 68, 215 (1977).CrossRefGoogle Scholar
38. Mori, H. and Fujita, H., Jap. J. Appl. Phys., 21, L494 (1982).CrossRefGoogle Scholar
39. Brimhall, J. L., Kissinger, H. E., and Charlot, L. A., Rad. Effs., 77, 273 (1983).CrossRefGoogle Scholar
40. Seidman, D. N., Averback, R. S. and Okamoto, P.R., Phys. Rev. Lett. (submitted).Google Scholar