Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:42:57.287Z Has data issue: false hasContentIssue false

The Role of Twinning in Brittle Fracture Of Ti-Aluminides

Published online by Cambridge University Press:  26 February 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
C. L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. K. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

The important roles of (111)[112] twinning in cleavage fracture of single-phase γ-TiAl and TiAl3 are assessed on the basis of theoretically calculated elastic constants, shear fault energies, and cleavage energies. The importance of elastic anisotropy in both homogeneous twin nucleation theory and dislocation models for twin nucleation is emphasized. The twin-slip conjugate relationship makes an important contribution to the strain compatibility for localized plasticity at a crack tip of Mode-I type. The intrinsic brittleness of these aluminides is attributed to a combined effect of the low mobility of slip and twin dislocations and the relatively low cleavage strength. The effect of the resolved normal stress on the twin plane is to enhance twinning activity at a (110) crack tip, leading to transformation toughening of shear type.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Christian, J. W. and Laughlan, D. E., Acta Metall. 36, 1617 (1988).CrossRefGoogle Scholar
2. Yoo, M. H., Fu, C. L., and Lee, J. K., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C. T., Taub, A. J., Stoloff, N. S., and Koch, C. C., MRS Symp. Proc. Vol. 133, MRS Publication, Pittsburgh, PA, 1989, p. 189.Google Scholar
3. Yamaguchi, M., Nishitani, S. R., and Shirai, Y., High-Temperature Aluminides and Intermerallics, Proc. of Symp. 1989 TMS Fall Meeting, Indianapolis, IN.Google Scholar
4. Yoo, M. H., Fu, C. L., and Lee, J. K., Revue de Physique Appliquee (in press).Google Scholar
5. Lipsitt, H. A., Shechtman, D., and Schafrik, R. E., Metall. Trans. 6A, 1991 (1975).Google Scholar
6. Yamaguchi, M., Shirai, Y., and Umakoshi, Y., Dispersion Strengthened Aluminum Alloys, ed. Kim, Y. W. and Griffith, W. M., TMS Symp. Proc., Materials Park, OH, 1988, p. 721.Google Scholar
7. Greenberg, B. F., Anisimov, V. I., and Gornostirev, Y. N., Scr. Metall. 22, 859 (1988).Google Scholar
8. Court, S. A., Vasudevan, V. K., and Fraser, H. L., Philos. Mag. A61, 141 (1990).Google Scholar
9. Fu, C. L. and Yoo, M. H., Alloy Phase Stability and Design, ed. Stocks, G. M., Pope, D. P., and Giamei, A. F., MRS Symp. Proc. Vol. 186, MRS Publication, Pittsburgh, PA 1990 (in press).Google Scholar
10. Yamaguchi, M., High-Temperature Ordered Intermetallic Compounds II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., MRS Symp. Proc.Vol. 81, MRS Publication, Pittsburgh, PA 1986, p. 275.Google Scholar
11. Yoo, M. H., J. Mater. Res. 4, 50 (1988).Google Scholar
12. Hanamura, T., Uemori, R., and Tanino, M., J. Mater. Res. 3, 656 (1988).Google Scholar
13. Hug, G. and Veyssiére, P., Electron Microscopy and Fracture Research of Materials, Intl. Symp., Dresden, 1989 (in press).Google Scholar
14. Fu, C. L. and Yoo, M. H., Philos. Mag. Lett. 62, 159 (1990).Google Scholar
15. Fu, C. L., J. Mater. Res. 5, 971 (1990).Google Scholar
16. Fu, C. L. and Yoo, M. H., High-Temperature Ordered Intermetallic Alloys III, ed. Liu, C. T., Taub, A. J., Stoloff, N. S., and Koch, C. C., MRS Symp. Proc. Vol. 133, MRS Publication, Pittsburgh, PA, 1989, p. 81.Google Scholar
17. Eshelby, J. D., Prog. Sol. Mech. 2, 89 (1961).Google Scholar
18. Johnson, W. C. and Cahn, J. W., Acta Metall. 32, 1925 (1984).Google Scholar
19. Lee, J. K. and Yoo, M. H., Metall. Trans. 21A, 2521 (1990).Google Scholar
20. Yoo, M. H., Takasugi, T., Hanada, S., and Izumi, O., Mater. Trans. Jpn. Inst. Metall. 31, 435 (1990).Google Scholar
21. Sih, G. C., Paris, P. C., and Irwin, G. R., Int. J. Fracture Mech. 1, 189 (1965).Google Scholar
22. The Role of Twinning in Fracture of Metals and Alloys, a collection of five papers presented at TMS Symposium, Metall. Trans. 12A (1981), pp. 365418.Google Scholar
23. Yamaguchi, M., Umakoshi, Y., and Yamane, T., Dislocations in Solids, Yamada Science Foundation, University of Tokyo Press, Tokyo, Japan, 1985, p. 77.Google Scholar
24. Kawabata, T., Takezono, Y., Kanai, T., and Izumi, O., Acta Metall. 36, 9163 (1988).Google Scholar
25. Soboyejo, W. O., Aswath, P. B., and Deffeyes, J. E., J. Mater. Sci. Eng. (in press).Google Scholar
26. Kohlhoff, S. and Schmauder, S., Atomistic Modelling in Materials -Beyond Pair Potentials, ed. Vitek, V. and Srolovitz, D. J., Plenum Press, NY, 1989, p. 411.Google Scholar
27. Liu, Y., Takasugi, T., Izumi, O., and Takahashi, T., Acta Metall. 36, 2959 (1988).Google Scholar
28. Yoo, M. H. and Fu, C. L., to be published.Google Scholar