Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:21:56.706Z Has data issue: false hasContentIssue false

The role of three-phonon Normal processes in the thermal conductivity of graphene

Published online by Cambridge University Press:  21 February 2012

Ayman Alofi
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Gyaneshwar P. Srivastava
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
Get access

Abstract

We have studied the thermal conductivity of graphene using Callaway’s effective relax-ation time theory and by employing analytical expressions for phonon dispersion relations and vibrational density of states based on the semicontinuum model by Nihira and Iwata. It is found that consideration of the momentum conserving nature of three-phonon Normal pro-cesses is very important for explaining the magnitude as well as the temperature dependence of the experimentally measured results. At room temperature, the N-drift contribution (the correction term in Callaway’s theory) provides 94% addition to the result obtained from the single-mode relaxation time theory, clearly suggesting that the single-mode relaxation time approach is inadequate for describing the phonon conductivity of graphene.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C. N., Nano Lett. 8, 902 (2008).Google Scholar
[2] Cai, W., Moore, A. L., Zhu, Y., Li, X., Chen, S., Shi, L., and Ruoff, R. S., Nano Lett. 10, 1645 (2010).Google Scholar
[3] Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., and Geim, A. K., ACS Nano 4, 1889 (2010).Google Scholar
[4] Jauregui, L. A., Yue, Y., Sidorov, A. N., and Hu, J., ECS Trans. 28, 73 (2010).Google Scholar
[5] Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. S., and Shi, L., Science abf 328, 213 (2010).Google Scholar
[6] Lee, J.-U., Yoon, D., Kim, H., Lee, S. W., and Cheong, H., Phys. Rev. B 83, 081419(R) (2011).Google Scholar
[7] Chen, S., Moore, A. L., Cai, W., Suk, J. W., An, J., Mishra, C., Amos, C.. Magnuson, C. W., Kang, J., Shi, L., and Ruff, R. S., ACS Nano 5, 321 (2011).Google Scholar
[8] Klemens, P. G., Proc. 26th Int. Thermal Cond. Conf. and 14th Int. Thermal Expan-sion Symposium, Aug. 6-8, 2001, Cambridge, MA (Thermal conductivity 26/Thermal expansion 14, Ed. Ralph Dinwiddie, DEStech Publs. Inc., 2004).Google Scholar
[9] Nika, D. L., Ghosh, S., Pokatilov, E. P., and Balandin, A. A., Appl. Phys. Lett. 94, 203103 (2009).Google Scholar
[10] Nika, D. L., Pokatilov, E. P., Askerov, A. S., and Balandin, A. A., Phys. Rev. B 79, 155413 (2009).Google Scholar
[11] Zhong, W. R., Zhang, M. P., Ai, B. Q., Zheng, D. Q., Appl. Phys. Lett. 98, 113107 (2011).Google Scholar
[12] Srivastava, G. P., The Physics of Phonons (Adam Hilger, Bristol, 1990).Google Scholar
[13] Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
[14] Nihira, T. and Iwata, T., Phys. Rev. B 68, 134305 (2003).Google Scholar
[15] Barman, S. and Srivastava, G. P., J. Appl. Phys. 101, 123507 (2007).Google Scholar
[16] Slack, G. A., Phys. Rev. 127, 694 (1962).Google Scholar