Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:17:43.705Z Has data issue: false hasContentIssue false

The Role of Thermal and Electronic Pressure in the Picosecond Acoustic Response of Femtosecond Laser-excited Solids

Published online by Cambridge University Press:  31 January 2011

Uladzimir Shymanovich
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Matthieu Nicoul
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Stefan Kähle
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Wei Lu
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Alexander Tarsevitch
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Ping Zhou
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Tobias Wietler
Affiliation:
[email protected], Universität Hannover, Hannover, Germany
Michael Horn-von Hoegen
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Dietrich von der Linde
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Klaus Sokolowski-Tinten
Affiliation:
[email protected], Universität Duisburg-Essen, Duisburg, Germany
Get access

Abstract

Ultrafast time-resolved X-ray diffraction has been used to study the dynamics of coherent acoustic phonons in fs laser-excited Ge and Au, with the particular goal to clarify the interplay of the electronic and thermal pressure contributions. For semiconductors it is usually assumed that the electronic pressure is the dominant driving force. Our measurements reveal that in Ge the relative strength of the electronic pressure decreases with increasing laser fluence. Only for low fluences the electronic pressure dominates, while at high fluences the thermal pressure exceeds the electronic pressure. For the case of Au the data are well described within the established theoretical framework using the known values for those material parameters which determine the laser-induced pressure, namely the energy relaxation time and the electronic and lattice Grüneisen parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thomsen, C. et al. , Phys. Rev. B34, 4129 (1986).Google Scholar
2 Lu, W. et al. , Phys. Rev. E80, 026404 (2009).Google Scholar
3 Nicoul, M. et al. , J. of Phys.: Conf. Ser. 21, 207 (2005).Google Scholar
4 Wright, O. B. et al. , Phys. Rev. B49, 9985 (1994).Google Scholar
5 Ligges, M. et al. , Appl. Phys. Lett. 94, 101910 (2009)Google Scholar