No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Non-local damping was investigated by Ferromagnetic Resonance (FMR) using ultrathin magnetic single and double layer structures prepared by Molecular Beam Epitaxy (MBE). The double layer structures show magnetic damping which is caused by spin transport across a normal metal spacer (N). In double layer structures a thin Fe layer, F1, was separated from a thick Fe layer, F2, by a Au(001) spacer. The interface magnetic anisotropies separated the FMR fields of F1 and F2 by a big margin allowing one to investigate FMR in F1 while F2 had a negligible angle of precession, and vice versa. The Fe films in magnetic double layers acquire non-local interface Gilbert damping. It will be shown that the precessing magnetic moments act as spin pumps and spin sinks. This concept was tested by investigating the FMR linewidth around an accidental crossover of the resonance fields for the layers F1 and F2. There is another possible mechanism for non-local damping which is based on a “breathing Fermi surface” of the spacer. The temperature dependence of the non-local damping indicates that this mechanism is weak in Au spacers. Surprisingly the Au spacer acts as an additional impedance for the spin pump mechanism. Finally, it will be shown that electron-electron correlations in a Pd spacer can lead to a significant enhancement of the non-local damping.