Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T08:57:36.176Z Has data issue: false hasContentIssue false

Role of Shear in the Isotropic to Lamellar Transition

Published online by Cambridge University Press:  21 February 2011

S. T. Milner
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
M. E. Cates
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
Get access

Abstract

In the isotropic to lamellar transition, nonlinear fluctuation terms lower the transition temperature τc and drive the transition first order. Here we show that steady shear, by suppressing the fluctuations, raises τc; in a certain temperature range the lamellar phase can be induced by applying shear. A study of the effective potential indicates that the transition remains first order, though becoming very weak at high shear rate. We argue heuristically that the lamellar ordering first occurs with wavevector normal to both the velocity and the velocity gradient. We estimate the characteristic shear rate for two current experimental systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roux, D. and Knobler, C. M., Phys. Rev. Lett. 60, 373 (1988); D. Roux, private communication.Google Scholar
2. Laughlin, R. G., in Advances in Liquid Crystals, Ed. Brown, G. H., Academic Press, New York (1978); C. R. Safinya, D. Roux, G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. Bellocq, Phys. Rev. Lett. 57, 2718 (1987); J. C. Lang and R. D. Morgan, J. Chem. Phys. 73, 5849 (1980); M. E. Cates, D. Roux, D. Andelman, S. T. Milner, and S. A. Safran, Europhys. Lett. 5, 733 (1988).Google Scholar
3. See e.g., Surfactants in Solution, Vols. 1–3, Eds., Mittal, K. L. and Lindman, B. (Plenum Press, New York 1984); Vols 4–6, Eds., K. L. Mittal and P. Bothorel (Plenum Press, New York, 1986).Google Scholar
4. Helfand, E. and Wassermann, Z., in Developments in Block Copolymers -1, Ed., Goodman, I. (Applied Science, New York, 1982); L. Leibler, Macromolecules 18, 1602 (1980); G. H. Fredrickson and E. Helfand, J. Chem. Phys. 87, 697 (1987); J. Chem. Phys. 89, 5890 (1988).Google Scholar
5. Fredrickson, G. H., J. Chem. Phys. 85, 5306 (1986); G. H. Fredrickson and R. G. Larson, J. Chem. Phys. 86, 1553 (1987); A. Onuki, J. Chem. Phys. 87, 3692 (1987).Google Scholar
6. Huse, D. and Leibler, S., J. Phys. (Paris) 49, 605 (1988).Google Scholar
7. Cates, M. E., Roux, D., Andelman, D., Milner, S. T., and Safran, S. A., Europhys. Lett. 5, 733 (1988).Google Scholar
8. Brazovskii, S., Zh. Eksp. Teor. Fiz. 68, 175 (1975); translated as Soy. Phys. JETP 41, 85 (1975).Google Scholar
9. However, the methods of the present paper are not appropriate to describe the effects of shear on the I-A transition in typical thermotropic smectics.Google Scholar
10. Cates, M. E. and Milner, S. T., Phys. Rev. Lett. 62, 1856 (1989).Google Scholar
11. Onuki, A. and Kawasaki, K., Annals of Phys. 121, 456 (1979).Google Scholar
12. A similar result appears in Eq.39 of Onuki, A., J. Chem. Phys. 87, 3692 (1987).Google Scholar
13. Bates, F. S., private communication.Google Scholar
14. In fact, for these multicomponent systems, the I-L transition involves phase coexistence over a finite temperature range (Refs.1–3). To describe this in detail one needs a more complicated form than (1) for H (perhaps with several order parameters). We hope to address this issue in future work.Google Scholar