Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T15:47:35.782Z Has data issue: false hasContentIssue false

Role of Neutral Impurity Scattering in the Analysis of Hall Data from ZnO and Other II-VI Materials

Published online by Cambridge University Press:  01 February 2011

Xiaocheng Yang
Affiliation:
[email protected], West Virginia University, Department of Physics, Room G 06 Hodges Hall, Morgantown, WV, 26506, United States
Chunchuan Xu
Affiliation:
[email protected], West Virginia University, Department of Physics, Morgantown, WV, 26506, United States
N. C. Giles
Affiliation:
[email protected], West Virginia University, Department of Physics, Morgantown, WV, 26506, United States
Get access

Abstract

To determine donor and acceptor concentrations affecting electrical properties in ZnO crystals, the relaxation time approximation (RTA) has been used to analyze mobility and carrier concentration data measured from 80 to 400 K. Five scattering mechanisms are included: polar-optical-phonon, piezoelectric potential, deformation potential, ionized impurity, and neutral impurity scattering. Temperature dependences of intrinsic mobilities and Hall r factors are determined. Neutral impurity (ni) scattering can play an important role in limiting the total mobility in ZnO single crystals. By including ni scattering, the experimental deformation potential E1 = 3.8 eV for ZnO can be used, rather than treating E1 as a fitting parameter. This approach yields “intrinsic” mobilities for n-type and p-type ZnO, and other II-VI materials. At 300 K, the intrinsic electron Hall mobility in ZnO is predicted to be 230 cm2/Vs. The results of fitting the temperature dependences of mobility and carrier concentrations from representative ZnO and CdSe bulk samples are shown. Intrinsic results for n-type CdS and ZnS will also be discussed. The 300-K intrinsic hole Hall mobility in ZnO is predicted to be about 50 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).10.1063/1.1992666Google Scholar
2. Ryu, Y. R., Lubguban, J. A., Lee, T. S., White, H. W., Jeong, T. S., Youn, C. J. and Kim, B. J., Appl. Phys. Lett. 90, 131115 (2007).10.1063/1.2718516Google Scholar
3. Park, C. H., Zhang, S. B. and Wei, Su-Huai, Phys. Rev. B 66, 073202 (2002).10.1103/PhysRevB.66.073202Google Scholar
4. Look, D. C., Jones, R. L., Sizelove, J. R., Garces, N. Y., Giles, N. C. and Halliburton, L. E., Phys. Stat. Sol. (a) 195, 171 (2003).10.1002/pssa.200306274Google Scholar
5. Agashe, C., Kluth, O., Hüpkes, J., Zastrow, U., Rech, B. and Wuttig, M., J. Appl. Phys. 95, 1911 (2004).10.1063/1.1641524Google Scholar
6. Sun, J. W., Lu, Y. M., Liu, Y. C., Shen, D. Z., Zhang, Z. Z., Li, B. H., Zhang, Y. Y., Yao, B., Zhao, D. X. and Fan, X. W., Appl. Phys. Lett. 89, 232101 (2006).Google Scholar
7. Rode, D. L., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1975) Vol. 10, Chapter 1.Google Scholar
8. Look, D. C., Electrical Characterization of GaAs Materials and Devices (Wiley, New York, 1989), Chapter 1.Google Scholar
9. Makino, T., Tsukazaki, A., Ohtomo, A., Kawasaki, M. and Koinuma, H., Jpn. J. Appl. Phys. 45 6346 (2006).Google Scholar
10. Look, D. C., Semicond. Sci. Technol. 20, S55 (2005).10.1088/0268-1242/20/4/007Google Scholar
11. Makino, T., Segawa, Y., Tsukazaki, A., Ohtomo, A., and Kawasaki, M., Appl. Phys. Lett. 87, 022101 (2005).Google Scholar
12. Chwang, R., Smith, B. J. and Crowell, C. R., Solid-State Electron. 17, 1217 (1974).10.1016/0038-1101(74)90001-XGoogle Scholar
13. Luo, M., Jiang, Y., Xu, C., Yang, X., Burger, A., and Giles, N. C., J. Phys. Chem. Solids 67, 2596 (2006).Google Scholar
14. Mahan, G. D., in Polarons in Ionic Crystals and Polar Semiconductors, edited by Devreese, J. T., (North Holland, Amsterdam, 1972) Chapter VI.Google Scholar
15. Haga, E., Prog. Theor. Phys. 13, 555 (1955).10.1143/PTP.13.555Google Scholar
16. Erginsoy, C., Phys. Rev. 79, 1013 (1950).Google Scholar
17. Blakemore, J. S., Semiconductor Statistics (Dover, New York, 1987) Chapter 3.Google Scholar
18. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., and Harsch, W. C., Sol. Stat. Commun. 105, 399 (1998).10.1016/S0038-1098(97)10145-4Google Scholar
19. Pearson, G. L. and Bardeen, J., Phys. Rev. 75, 865 (1949).Google Scholar