Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:41:57.067Z Has data issue: false hasContentIssue false

Role of Morphology on the Large Coercive Behavior in Co80Ni20Nanowires

Published online by Cambridge University Press:  10 June 2014

A. Gaul
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
N. Ouar
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
S. Mercone*
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
F. Zighem
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
F. Schoenstein
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
B. Leridon
Affiliation:
LPEM, ESPCI-ParisTech, CNRS, UPMC, 10 rue Vauquelin, F-75231 Paris Cedex 5, France
S. Farhat
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
N. Jouini
Affiliation:
LSPM-UPR3 3407, CNRS, Université Paris 13, Sorbonne Paris Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
*
*Corresponding author: [email protected]
Get access

Abstract

Ferromagnetic metal CoNi-based nano-objects have been synthesized in a polyol media within different elaboration conditions in order to drive their morphology (i.e. enhancing their length-to-diameter ratio ﴾d/L﴿, and changing the diameter d ratio over edge T width ﴾d/L﴿). Transmission Electron Microscopy (TEM) studies revealed unexpected effects on the Co80Ni20 nano-objects arising from the magnetic field assisted synthesis. This gave us the opportunity to compare this latter to coming from the variation of Ruthenium (III) chloride hydrate nucleating agent concentration. A Co80Ni20 anisotropic particles elaboration was successfully achieved under zero magnetic field assisted synthesis, while an important percentage of isotropic nanoparticles appeared immediately under the application of a small magnetic field (i.e. H > 500 Oe). In the first case we were able to sharply drive both the aspect ratio and head morphology of nanowires (T and ﴾d/T﴿). The good crystallinity and structures symmetry of all our samples have been proved by X-Ray Diffraction (XRD) pattern analysis. Magnetic static properties showed a ferromagnetic standard behavior with a coercive field efficiency which was strongly dependent on shape parameters. The magnetic static behavior was studied within a standard Stoner-Wohlfart model as a function of the observed morphologies. Our observations are fully consistent with a shape anisotropy origin behavior of the enhanced coercivity measured as function of the decreasing ﴾d/L﴿ ratio. However, they revealed the presence of contributions to the global effective anisotropy coming from other complex terms then the shape one (i.e. conic head impressiveness, dipolar interactions and magnetocrystalline anisotropy).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ouar, N., Schoenstein, F., Mercone, S., Farhat, S., Villeroy, B., Leridon, B., J. Appl. Phys. 114(16), 163907 (2013)CrossRefGoogle Scholar
McGray, P.D., Tan, L., Zou, J., Stadler, B. J. H., Downey, P. R. and Flatau, A. B., J. Appl. Phys. 99, 08B310 (2006)CrossRefGoogle Scholar
Dumestre, F., Chaudret, B., Amiens, C., Respaud, M., Fejes, P., Renaud, P., and Zurcher, P., Angew. Chem Int. Ed. 42, 52135216 (2003), A. I. Gapin, X. R. Ye, J. F. Aubuchon, L. H. Chen, Y. J. Tang, and S. Jin, J. Appl. Phys. 99, 08G902(2006) CrossRefGoogle Scholar
, S. Parkin, S. P., Hayashi, M., Thomas, L., Science 320, 190 (2008)CrossRefGoogle Scholar
Ye, B., Lia, F., Cimpoesu, D., Wileya, J.B., Jung, J.-S., Stancu, A., Spinu, L., J. Magn. Magn. Mater 316, E56 (2007)CrossRefGoogle Scholar
Ott, F., Maurer, T., Chaboussant, G., Soumare, Y., Piquemal, J.-Y., Viau, G., J. Appl. Phys. 105, 013915 (2009); T. Maurer, F. Zighem, F. Ott, G. Chaboussant, G. André, Y. Soumare, J.- Y. Piquemal, G. Viau, C. Gatel, Phys. Rev. B 80, 064427(2009) CrossRefGoogle Scholar
Soumare, Y., Piquemal, J.-Y., Maurer, T., Ott, F., Chaboussant, G., Falqui, A. and Viau, G., J. Mater. Chem. , 18, 56965702 (2008)CrossRefGoogle Scholar
Lutterotti, L., Chategnier, D., Ferrari, S., Ricote, J., Thin Solid Films, 450, 1, 134137 (2004)CrossRefGoogle Scholar
Ait Atmane, K., Zighem, F., Soumare, Y., Ibrahim, M., Boubekri, R., Maurer, T., Margueritat, J., Piquemal, J.-Y., Ott, F., Chaboussant, G., Schoenstein, F., Jouini, N. and Viau, G., J. Sol. State Chem. , 197, 297303, (2013)CrossRefGoogle Scholar
Viau, G., Garcia, C., Maurer, T., Chaboussant, G., Ott, F., Soumare, Y., Piquemal, J.Y., Physica Status Solidi A 206, 663666, (2009)CrossRefGoogle Scholar
Ung, D., Viau, G., Fievet-Vincent, F., Herbst, F., Richard, V., Fievet, F., Progress in Solid State Chemistry 33 137145, (2005)CrossRefGoogle Scholar
Liu, P., Li, Z., Zhao, B., Yadian, B., Zhang, Y., Mat. Lett. 63 (2009) 16501652 ; J. Wang, Q. Chen, C. Zeng, and B. Hou, Adv. Mater., 16, 137–140, (2004); A. A. Farghaly, Z. J. Huba, E. E. Carpenter, J. Nanopart Res 14,1159, (2012); N.S. Gajbhie, S. Srivastava, S. Kurian, B.R. Behta and V.N. Singh, J. Phys. Conf. Ser. 200, 072093, (2010) CrossRefGoogle Scholar
Sun, L., Hao, Y., Chien, C-L., Searson, P. C., IBM J. of Res. and Develop., 49, 1, 79 (2005)CrossRefGoogle Scholar